Measurement Uncertainty

Measurement Uncertainty

Author: Ronald H. Dieck

Publisher: ISA

Published: 2007

Total Pages: 292

ISBN-13: 9781556179150

DOWNLOAD EBOOK

Literally an entire course between two covers, Measurement Uncertainty: Methods and Applications, Fourth Edition, presents engineering students with a comprehensive tutorial of measurement uncertainty methods in a logically categorized and readily utilized format. The new uncertainty technologies embodied in both U.S. and international standards have been incorporated into this text with a view toward understanding the strengths and weaknesses of both. The book is designed to also serve as a practical desk reference in situations that commonly confront an experimenter. The text presents the basics of the measurement uncertainty model, non-symmetrical systematic standard uncertainties, random standard uncertainties, the use of correlation, curve-fitting problems, and probability plotting, combining results from different test methods, calibration errors, and uncertainty propagation for both independent and dependent error sources. The author draws on years of experience in industry to direct special attention to the problem of developing confidence in uncertainty analysis results and using measurement uncertainty to select instrumentation systems.


An Introduction to Uncertainty in Measurement

An Introduction to Uncertainty in Measurement

Author: L. Kirkup

Publisher: Cambridge University Press

Published: 2006-06-01

Total Pages: 196

ISBN-13: 1139454900

DOWNLOAD EBOOK

Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.


Measurement Uncertainty

Measurement Uncertainty

Author: Simona Salicone

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 235

ISBN-13: 0387463283

DOWNLOAD EBOOK

The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.


Measurement Uncertainty in Chemical Analysis

Measurement Uncertainty in Chemical Analysis

Author: Paul De Bièvre

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 294

ISBN-13: 3662051737

DOWNLOAD EBOOK

It is now becoming recognized in the measurement community that it is as important to communicate the uncertainty related to a specific measurement as it is to report the measurement itself. Without knowing the uncertainty, it is impossible for the users of the result to know what confidence can be placed in it; it is also impossible to assess the comparability of different measurements of the same parameter. This volume collects 20 outstanding papers on the topic, mostly published from 1999-2002 in the journal "Accreditation and Quality Assurance." They provide the rationale for why it is important to evaluate and report the uncertainty of a result in a consistent manner. They also describe the concept of uncertainty, the methodology for evaluating uncertainty, and the advantages of using suitable reference materials. Finally, the benefits to both the analytical laboratory and the user of the results are considered.


An Introduction to Measurement Uncertainty

An Introduction to Measurement Uncertainty

Author: Blair D Hall

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9780473405823

DOWNLOAD EBOOK

"This introduction to measurement uncertainty is intended for metrology professionals working in calibration laboratories and metrology institutes, as well as students in tertiary-level science and engineering programmes. The subject matter is presented with an emphasis on developing models of the physical measurement process. The level of mathematics and statistics used is basic and is typically covered by high school studies"--Distributor's website.


The Uncertainty of Measurements

The Uncertainty of Measurements

Author: Shri Krishna Kimothi

Publisher: Quality Press

Published: 2001-11-01

Total Pages: 415

ISBN-13: 087389085X

DOWNLOAD EBOOK

The uncertainty of measurement results is drawing attention of managers, metrologists and customers. The accuracy of measurements affects all of us in trade, commerce, safety, health care environmental protection and more. The quality of these measurements are regulated by a variety of government agencies. Measurement also plays an important role in manufacturing and service organizations. Use this book to learn more about metrology and the need for reliable measurements. You can also learn about measurement system and quality of measurement systems, objectives and methods. Statistical techniques in metrology are also explained. Examples of measurement data and random variables, probability density functions, sampling distribution, statistical estimation degrees of freedom and regression are included. An entire chapter is devoted to measurement errors. The book goes in-depth into explaining national and international measurement systems and standards, and includes a complete chapter on calibration and measurement trace ability. Measurement Uncertainty will show how to evaluate various uncertainties in measurements using several approaches including international consensus. Calibration laboratories can look specifically at the chapter on that profession to guide them in their measurement improvements. Kimothi also looks at specific industries and their measurement capabilities and includes examples of R&R studies. A great resource for the CQE, CQT, CCT, CSSBB certification exams!


Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (rev. Ed. )

Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (rev. Ed. )

Author: Barry N. Taylor

Publisher: DIANE Publishing

Published: 2009-11

Total Pages: 25

ISBN-13: 1437915566

DOWNLOAD EBOOK

Results of measurements and conclusions derived from them constitute much of the technical information produced by the National Institute of Standards and Technology (NIST). In July 1992 the Director of NIST appointed an Ad Hoc Committee on Uncertainty Statements and charged it with recommending a policy on this important topic. The Committee concluded that the CIPM approach could be used to provide quantitative expression of measurement that would satisfy NIST¿s customers¿ requirements. NIST initially published a Technical Note on this issue in Jan. 1993. This 1994 edition addresses the most important questions raised by recipients concerning some of the points it addressed and some it did not. Illustrations.


Measurement Uncertainty and Probability

Measurement Uncertainty and Probability

Author: Robin Willink

Publisher: Cambridge University Press

Published: 2013-02-14

Total Pages: 295

ISBN-13: 113961990X

DOWNLOAD EBOOK

A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.


Uncertainty, Calibration and Probability

Uncertainty, Calibration and Probability

Author: C.F Dietrich

Publisher: Routledge

Published: 2017-07-12

Total Pages: 554

ISBN-13: 1351406280

DOWNLOAD EBOOK

All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sources of measurement errors and curve fitting with numerous examples of uncertainty case studies. Many useful tables and computational formulae are included as well. All formulations are discussed and demonstrated with the minimum of mathematical knowledge assumed. This second edition offers additional examples in each chapter, and detailed additions and alterations made to the text. New chapters consist of the general theory of uncertainty and applications to industry and a new section discusses the use of orthogonal polynomials in curve fitting. Focusing on practical problems of measurement, Uncertainty, Calibration and Probability is an invaluable reference tool for R&D laboratories in the engineering/manufacturing industries and for undergraduate and graduate students in physics, engineering, and metrology.


Evaluating the Measurement Uncertainty

Evaluating the Measurement Uncertainty

Author: I Lira

Publisher: CRC Press

Published: 2002-04-09

Total Pages: 278

ISBN-13: 9781420034363

DOWNLOAD EBOOK

It is now widely recognized that measurement data should be properly analyzed to include an assessment of their associated uncertainty. Since this parameter allows for a meaningful comparison of the measurement results and for an evaluation of their reliability, its expression is important not only in the specialized field of scientific metrology, but also in industry, trade, and commerce. General rules for evaluating and expressing the uncertainty are given in the internationally accepted ISO Guide to the Expression of Uncertainty in Measurement, generally known as the GUM. Evaluating the Measurement Uncertainty details the theoretical framework on which the GUM is based and provides additional material on more advanced topics such as least-squares adjustment and Bayesian statistics. The book does not require previous knowledge other than elementary calculus and can be read as a complement to the GUM or as a stand-alone reference source. It stresses fundamental principles and illustrates their applications through numerous examples taken from many different fields of metrology. The book includes practical guidance as well as theoretical aspects, resulting in an invaluable resource for metrologists, engineers, physicists, and graduate students involved with measurements in academia and industry.