Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions

Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions

Author: Markus Zinser

Publisher: Springer

Published: 2018-09-25

Total Pages: 386

ISBN-13: 3030006506

DOWNLOAD EBOOK

This book presents two analyses, the first of which involves the search for a new heavy charged gauge boson, a so-called W' boson. This new gauge boson is predicted by some theories extending the Standard Model gauge group to solve some of its conceptual problems. Decays of the W' boson in final states with a lepton (l± = e± , μ±) and the corresponding (anti-)neutrino are considered. Data collected by the ATLAS experiment in 2015 at a center of mass energy of √s =13 TeV is used for the analysis. In turn, the second analysis presents a measurement of the double-differential cross section of the process pp->Z/gamma^* + X -> l^+l^- + X, including a gamma gamma induced contribution, at a center of mass energy of sqrt{s} = 8 TeV. The measurement is performed in an invariant mass region of 116 GeV to 1500 GeV as a function of invariant mass and absolute rapidity of the l^+l^-- pair, and as a function of invariant mass and pseudorapidity separation of the l^+l^-- pair. The data analyzed was recorded by the ATLAS experiment in 2012 and corresponds to an integrated luminosity of 20.3/fb. It is expected that the measured cross sections are sensitive to the PDFs at very high values of the Bjorken-x scaling variable, and to the photon structure of the proton.


Study of Double Parton Scattering in Photon + 3 Jets Final State

Study of Double Parton Scattering in Photon + 3 Jets Final State

Author: You-Hao Chang

Publisher: Springer

Published: 2017-01-20

Total Pages: 107

ISBN-13: 9811038244

DOWNLOAD EBOOK

This book mainly focuses on the study of photon + 3 jets final state in Proton-Proton Collisions at √s = 7TeV, searching for patterns of two (or more) distinct hard scatterings in the same collision, i.e the so-called Double Parton Scattering (DPS). A new method by using Monte Carlo generators was performed and provides higher order corrections to the description of the Single Parton Scattering (SPS) background. Further it is investigated whether additional contributions from DPS can improve the agreement between the measured data and the Monte Carlo predictions. The current theoretical uncertainties related to the SPS background are found to be larger than expectation. At the same time a rich set of DPS-sensitive measurements is reported for possible further interpretation.