Proceedings of the International Conference on The Nucleus: New Physics for the New Millennium, held January 18-22, 1999, at the National Accelerator Centre, Faure, South Africa
This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov’s theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.
Observations of neutrinos being emitted by the supernova SN1987A, star neutrinos, and atmospheric neutrinos have provided new insights into astronomy, as well as new unresolved phenomena such as the solar neutrino problem, spurring investigative studies among particle physicists and astrophysicists. One of the most important features of this book is its enumeration of a number of basic properties of neutrinos and their relationship to Grand Unified Theories, focusing on the origin of the neutrino's mass and the generation mixing of neutrinos. All the kamiokande results, detector performances, and complete references are included.
While we have attempted to mention at least the most important developments in the theory of pre-equilibrium reactions, the volume of work in this area over the last few years has been so immense that it is not possible to give a comprehensive account of all that has been done. Our aim is to describe as clearly as we can the main physical ideas and to sketch the mathematical formulations that have been developed to enable practical calculations to be made. We attach particular importance to the detailed comparisons between theory and experiment because only in this way is it possible to assess the usefulness and validity of the theories that have been proposed.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
This book provides an introductory course on Nuclear and Particle physics for undergraduate and early-graduate students, which the author has taught for several years at the University of Zurich. It contains fundamentals on both nuclear physics and particle physics. Emphasis is given to the discovery and history of developments in the field, and is experimentally/phenomenologically oriented. It contains detailed derivations of formulae such as 2- 3 body phase space, the Weinberg-Salam model, and neutrino scattering. Originally published in German as 'Kern- und Teilchenphysik', several sections have been added to this new English version to cover very modern topics, including updates on neutrinos, the Higgs boson, the top quark and bottom quark physics. - Prové de l'editor.
A highly practical reference for health physicists and other professionals, addressing practical problems in radiation protection, this new edition has been completely revised, updated and supplemented by such new sections as log-normal distribution and digital radiography, as well as new chapters on internal radiation dose and the environmental transport of radionuclides. Designed for readers with limited as well as basic science backgrounds, the handbook presents clear, thorough and up-to-date explanations of the basic physics necessary. It provides an overview of the major discoveries in radiation physics, plus extensive discussion of radioactivity, including sources and materials, as well as calculational methods for radiation exposure, comprehensive appendices and more than 400 figures. The text draws substantially on current resource data available, which is cross-referenced to standard compendiums, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts from the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Throughout, the author emphasizes applied concepts and carefully illustrates all topics using real-world examples as well as exercises. A much-needed working resource for health physicists and other radiation protection professionals.