Mean Value Theorems and Functional Equations

Mean Value Theorems and Functional Equations

Author: Prasanna Sahoo

Publisher: World Scientific

Published: 1998

Total Pages: 268

ISBN-13: 9789810235444

DOWNLOAD EBOOK

This book takes a comprehensive look at mean value theorems and their connection with functional equations. Besides the traditional Lagrange and Cauchy mean value theorems, it covers the Pompeiu and the Flett mean value theorems as well as extension to higher dimensions and the complex plane. Furthermore the reader is introduced to the field of functional equations through equations that arise in connection with the many mean value theorems discussed.


Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications

Author: Themistocles M. Rassias

Publisher: Springer Science & Business Media

Published: 2003-09-30

Total Pages: 244

ISBN-13: 9781402015786

DOWNLOAD EBOOK

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.


Introduction to Functional Equations

Introduction to Functional Equations

Author: Prasanna K. Sahoo

Publisher: CRC Press

Published: 2011-02-08

Total Pages: 459

ISBN-13: 1439841160

DOWNLOAD EBOOK

Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p


Stability of Functional Equations in Random Normed Spaces

Stability of Functional Equations in Random Normed Spaces

Author: Yeol Je Cho

Publisher: Springer Science & Business Media

Published: 2013-08-27

Total Pages: 255

ISBN-13: 1461484774

DOWNLOAD EBOOK

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.


Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications

Author: Themistocles RASSIAS

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 221

ISBN-13: 940170225X

DOWNLOAD EBOOK

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.


Implicit Functions and Solution Mappings

Implicit Functions and Solution Mappings

Author: Asen L. Dontchev

Publisher: Springer

Published: 2014-06-18

Total Pages: 495

ISBN-13: 149391037X

DOWNLOAD EBOOK

The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.


Functional Equations and Inequalities with Applications

Functional Equations and Inequalities with Applications

Author: Palaniappan Kannappan

Publisher: Springer Science & Business Media

Published: 2009-06-10

Total Pages: 817

ISBN-13: 0387894926

DOWNLOAD EBOOK

Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.


MVT: A Most Valuable Theorem

MVT: A Most Valuable Theorem

Author: Craig Smorynski

Publisher: Springer

Published: 2017-04-07

Total Pages: 504

ISBN-13: 3319529560

DOWNLOAD EBOOK

This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mathematics majors as well as graduate students. Unlike other books, the present monograph treats the mathematical and historical aspects in equal measure, providing detailed and rigorous proofs of the mathematical results and even including original source material presenting the flavour of the history.


Calculus: Early Transcendentals

Calculus: Early Transcendentals

Author: James Stewart

Publisher: Cengage Learning

Published: 2020-01-23

Total Pages: 0

ISBN-13: 9781337613927

DOWNLOAD EBOOK

James Stewart's Calculus series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy of providing students with the strongest foundation for a STEM future. Their careful refinements retain Stewart’s clarity of exposition and make the 9th Edition even more useful as a teaching tool for instructors and as a learning tool for students. Showing that Calculus is both practical and beautiful, the Stewart approach enhances understanding and builds confidence for millions of students worldwide. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Half-Linear Differential Equations

Half-Linear Differential Equations

Author: Ondrej Dosly

Publisher: Elsevier

Published: 2005-07-06

Total Pages: 533

ISBN-13: 0080461239

DOWNLOAD EBOOK

The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations.- The first complete treatment of the qualitative theory of half-linear differential equations.- Comparison of linear and half-linear theory.- Systematic approach to half-linear oscillation and asymptotic theory.- Comprehensive bibliography and index.- Useful as a reference book in the topic.