Matter and Interactions

Matter and Interactions

Author: Ruth W. Chabay

Publisher: John Wiley & Sons

Published: 2015-01-12

Total Pages: 1136

ISBN-13: 1118875869

DOWNLOAD EBOOK

Matter and Interactions, 4th Edition offers a modern curriculum for introductory physics (calculus-based). It presents physics the way practicing physicists view their discipline while integrating 20th Century physics and computational physics. The text emphasizes the small number of fundamental principles that underlie the behavior of matter, and models that can explain and predict a wide variety of physical phenomena. Matter and Interactions, 4th Edition will be available as a single volume hardcover text and also two paperback volumes.


Light-Matter Interaction

Light-Matter Interaction

Author: John Weiner

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 256

ISBN-13: 3527617892

DOWNLOAD EBOOK

A thorough introduction to atomic, molecular, and optical (AMO) science and engineering Atomic, molecular, and optical (AMO) science and engineering stands at the confluence of strong scientific and technological currents in physics, chemistry, and electrical engineering. It seeks ways to expand our ability to use light for many purposes: to observe and manipulate matter at the atomic scale, to use nanostructures to manipulate light at the subwavelength scale, to develop quantum devices, and to control internal molecular motion and modify chemical reactivity with light. The two-volume Light-Matter Interaction draws together the principal ideas that form the basis of AMO science and engineering. Volume 1: Fundamentals and Applications fills many gaps left by standard courses and texts in chemical physics and electrical engineering to supply the basis of what the AMO scientist or engineer needs to build a solid foundation of understanding in the field. Organized to serve as both textbook and reliable desk reference to a diverse audience ranging from student and novice to advanced practitioner, this book discusses both the fundamentals and common applications, including: * Classical absorption and emission of radiation * Quantum dipole coupling to the two-level system * The optical Bloch equations * Quantized fields and dressed states * Optical forces and cooling from atom-light interaction * The laser in theory and practice * Geometrical and wave optics: theory and applications * The Gaussian beam and optical resonators


Matter and Interactions, Volume 1

Matter and Interactions, Volume 1

Author: Ruth W. Chabay

Publisher: Wiley

Published: 2018-07-31

Total Pages: 0

ISBN-13: 9781119462095

DOWNLOAD EBOOK

Matter and Interactions offers a modern curriculum for introductory physics (calculus-based). It presents physics the way practicing physicists view their discipline while integrating 20th Century physics and computational physics. The text emphasizes the small number of fundamental principles that underlie the behavior of matter, and models that can explain and predict a wide variety of physical phenomena. Matter and Interactions will be available as a single volume hardcover text and also two paperback volumes. Volume One includes chapters 1-12.


Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Author: Edbert Jarvis Sie

Publisher: Springer

Published: 2018-09-04

Total Pages: 0

ISBN-13: 9783319887999

DOWNLOAD EBOOK

This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.


Short Pulse Laser Interactions With Matter: An Introduction

Short Pulse Laser Interactions With Matter: An Introduction

Author: Paul Gibbon

Publisher: World Scientific

Published: 2005-09-05

Total Pages: 327

ISBN-13: 1911298844

DOWNLOAD EBOOK

This book represents the first comprehensive treatment of the subject, covering the theoretical principles, present experimental status and important applications of short-pulse laser-matter interactions.Femtosecond lasers have undergone dramatic technological advances over the last fifteen years, generating a whole host of new research activities under the theme of “ultrafast science”. The focused light from these devices is so intense that ordinary matter is torn apart within a few laser cycles. This book takes a close-up look at the exotic physical phenomena which arise as a result of this new form of “light-matter” interaction, covering a diverse set of topics including multiphoton ionization, rapid heatwaves, fast particle generation and relativistic self-channeling. These processes are central to a number of exciting new applications in other fields, such as microholography, optical particle accelerators and photonuclear physics.Repository for numerical models described in Chapter 6 can be found at www.fz-juelich.de/zam/cams/plasma/SPLIM/./a


Photonics

Photonics

Author: Ralf Menzel

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 895

ISBN-13: 3662045214

DOWNLOAD EBOOK

Deals with the fundamental properties of photon and light beams, both experimentally and theoretically. It covers the essentials of linear interactions and most of the nonlinear interactions between light and matter in both the transparent and absorbing cases. About 4000 references open access to original literature.


Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics

Author: Stefaan Tavernier

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 316

ISBN-13: 3642008291

DOWNLOAD EBOOK

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.


Physics Of High Power Laser Matter Interactions - Proceedings Of The Japan-us Seminar

Physics Of High Power Laser Matter Interactions - Proceedings Of The Japan-us Seminar

Author: H Takabe

Publisher: World Scientific

Published: 1993-01-08

Total Pages: 470

ISBN-13: 9814554162

DOWNLOAD EBOOK

The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: How is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently.The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach ∗ algebras, real C∗-algebras and W∗-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily.The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras.


Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures

Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures

Author: Paulo André Dias Gonçalves

Publisher: Springer Nature

Published: 2020-03-19

Total Pages: 243

ISBN-13: 3030382915

DOWNLOAD EBOOK

This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.