Matrix Methods

Matrix Methods

Author: Vadim Olshevsky

Publisher: World Scientific

Published: 2010

Total Pages: 604

ISBN-13: 9812836020

DOWNLOAD EBOOK

Operators preserving primitivity for matrix pairs / L.B. Beasley, A.E. Guterman -- Decompositions of quaternions and their matrix equivalents / D. Janovská, G. Opfer -- Sensitivity analysis of Hamiltonian and reversible systems prone to dissipation-induced instabilities / O.N. Kirillov -- Block triangular miniversal deformations of matrices and matrix pencils / L. Klimenko, V.V. Sergeichuk -- Determining the Schein rank of boolean matrices / E.E. Marenich -- Lattices of matrix rows and matrix columns. Lattices of invariant column eigenvectors / V. Marenich -- Matrix algebras and their length / O.V. Markova -- On a new class of singular nonsymmetric matrices with nonnegative integer spectra / T. Nahtman, D. von Rosen -- Reduction of a set of matrices over a principal ideal domain to the Smith normal forms by means of the same one-sided transformation / V.M. Prokip -- Nonsymmetric algebraic Riccati equations associated with an M-matrix : recent advances and algorithms / D.A. Bini, B. Iannazzo, B. Meini, F. Poloni -- A generalized conjugate direction method for nonsymmetric large ill-conditioned linear systems / E.R. Boudinov, A.I. Manevich -- There exist normal Hankel ([symbol], [symbol])-circulants of any order [symbol] / V.N. Chugunov, Kh. D. Ikramov -- On the treatment of boundary artifacts in image restoration by reflection and/or anti-reflection / M. Donatelli, S. Serra-Capizzano -- Zeros of determinants of [symbol]-matrices / W. Gander -- How to find a good submatrix / S.A. Goreinov [und weiteren] -- Conjugate and semi-conjugate direction methods with preconditioning projectors / V.P. Il'in -- Some relationships between optimal preconditioner and superoptimal preconditioner / J.-B. Chen [und weiteren] -- Scaling, preconditioning, and superlinear convergence in GMRES-type iterations / I. Kaporin -- Toeplitz and Toeplitz-block-Toeplitz matrices and their correlation with syzygies of polynomials / H. Khalil, B. Mourrain, M. Schatzman -- Concepts of data-sparse tensor-product approximation in many-particle modelling / H.-J. Flad [und weiteren] -- Separation of variables in nonlinear fermi equation / Yu. I. Kuznetsov -- Faster multipoint polynomial evaluation via structured matrices / B. Murphy, R.E. Rosholt -- Testing pivoting policies in Gaussian elimination / B. Murphy [und weiteren] -- Newton's iteration for matrix inversion, advances and extensions / V.Y. Pan -- Truncated decompositions and filtering methods with reflective/antireflective boundary conditions : a comparison / C. Tablino Possio -- Discrete-time stability of a class of hermitian polynomial matrices with positive semidefinite coefficients / H.K. Wimmer -- Splitting algorithm for solving mixed variational inequalities with inversely strongly monotone operators / I. Badriev, O. Zadvornov -- Multilevel algorithm for graph partitioning / N.S. Bochkarev, O.V. Diyankov, V.Y. Pravilnikov -- 2D-extension of singular spectrum analysis : algorithm and elements of theory / N.E. Golyandina, K.D. Usevich -- Application of radon transform for fast solution of boundary value problems for elliptic PDE in domains with complicated geometry / A.I. Grebennikov -- Application of a multigrid method to solving diffusion-type equations / M.E. Ladonkina, O. Yu. Milukova, V.F. Tishkin -- Monotone matrices and finite volume schemes for diffusion problems preserving non-negativity of solution / I.V. Kapyrin -- Sparse approximation of FEM matrix for sheet current integro-differential equation / M. Khapaev, M. Yu. Kupriyanov -- The method of magnetic field computation in presence of an ideal conductive multiconnected surface by using the integro-differential equation of the first kind / T. Kochubey, V.I. Astakhov -- Spectral model order reduction preserving passivity for large multiport RCLM networks / Yu. M. Nechepurenko, A.S. Potyagalova, I.A. Karaseva -- New smoothers in multigrid methods for strongly nonsymmetric linear systems / G.V. Muratova, E.M. Andreeva -- Operator equations for eddy currents on singular carriers / J. Naumenko -- Matrix approach to modelling of polarized radiation transfer in heterogeneous systems / T.A. Sushkevich, S.A. Strelkov, S.V. Maksakova -- The Method of Regularization of Tikhonov Based on Augmented Systems / A.I. Zhdanov, T.G. Parchaikina


Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

Published: 2016-09-22

Total Pages: 233

ISBN-13: 3319422138

DOWNLOAD EBOOK

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.


Ordinary Differential Equations and Stability Theory:

Ordinary Differential Equations and Stability Theory:

Author: David A. Sanchez

Publisher: Courier Dover Publications

Published: 2019-09-18

Total Pages: 179

ISBN-13: 0486837599

DOWNLOAD EBOOK

This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.


Advances in Stability Theory at the End of the 20th Century

Advances in Stability Theory at the End of the 20th Century

Author: A.A. Martynyuk

Publisher: CRC Press

Published: 2002-10-03

Total Pages: 366

ISBN-13: 0203166574

DOWNLOAD EBOOK

This volume presents surveys and research papers on various aspects of modern stability theory, including discussions on modern applications of the theory, all contributed by experts in the field. The volume consists of four sections that explore the following directions in the development of stability theory: progress in stability theory by first


Stability Theory of Differential Equations

Stability Theory of Differential Equations

Author: Richard Bellman

Publisher: Courier Corporation

Published: 2013-02-20

Total Pages: 178

ISBN-13: 0486150135

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.


Matrix Diagonal Stability in Systems and Computation

Matrix Diagonal Stability in Systems and Computation

Author: Eugenius Kaszkurewicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 279

ISBN-13: 1461213460

DOWNLOAD EBOOK

This monograph presents a collection of results, observations, and examples related to dynamical systems described by linear and nonlinear ordinary differential and difference equations. In particular, dynamical systems that are susceptible to analysis by the Liapunov approach are considered. The naive observation that certain "diagonal-type" Liapunov functions are ubiquitous in the literature attracted the attention of the authors and led to some natural questions. Why does this happen so often? What are the spe cial virtues of these functions in this context? Do they occur so frequently merely because they belong to the simplest class of Liapunov functions and are thus more convenient, or are there any more specific reasons? This monograph constitutes the authors' synthesis of the work on this subject that has been jointly developed by them, among others, producing and compiling results, properties, and examples for many years, aiming to answer these questions and also to formalize some of the folklore or "cul ture" that has grown around diagonal stability and diagonal-type Liapunov functions. A natural answer to these questions would be that the use of diagonal type Liapunov functions is frequent because of their simplicity within the class of all possible Liapunov functions. This monograph shows that, although this obvious interpretation is often adequate, there are many in stances in which the Liapunov approach is best taken advantage of using diagonal-type Liapunov functions. In fact, they yield necessary and suffi cient stability conditions for some classes of nonlinear dynamical systems.