Matrix-Based Multigrid
Author: Yair Shapira
Publisher: Springer Science & Business Media
Published: 2013-04-17
Total Pages: 225
ISBN-13: 1475737262
DOWNLOAD EBOOKMany important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.