The most popular activity-centered math curriculum in use today. Contains over 200 innovative math experiments. Revised sourcebook also features an index keying the sourcebook and summary newsletter.
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
Critically acclaimed and commercially successful, this resource is packed with useful information and instruction. Features proven teaching techniques, games, and more. Suitable for parents of children from preschool to age 10. 2006 edition.
Achieve High-Quality Mathematics Discourse With Purposeful Talk Techniques Many mathematics teachers agree that engaging students in high quality discourse is important for their conceptual learning, but successfully promoting such discourse in elementary classrooms—with attention to the needs of every learner—can be a challenge. Activating Math Talk tackles this challenge by bringing practical, math-specific, productive discourse techniques that are applicable to any lesson or curriculum. Framed around 11 student-centered discourse techniques, this research-based book connects purposeful instructional techniques to specific lesson goals and includes a focus on supporting emergent multilingual learners. You will be guided through each technique with Classroom examples of tasks and techniques spanning grades K–5 Reflection moments to help you consider how key ideas relate to your own instruction Classroom vignettes that illustrate the techniques in action and provide opportunities to analyze and prepare for your own implementation Group discussion questions for engaging with colleagues in your professional community Achieving high-quality mathematics discourse is within your reach using the clear-cut techniques that activates your math talk efforts to promote every student’s conceptual learning.
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Expanded to include connections to Common Core State Standards, as well as National Council of Teachers of Mathematics (NCTM) standards, this critically acclaimed book will help every teacher and coach to meet the challenges of differentiating mathematics instruction in the K–8 classroom. In this bestseller, math education expert Marian Small explains two powerful and universal strategies that teachers can use across all math content: Open Questions and Parallel Tasks. Showing teachers how to get started and become expert with these strategies, Small also demonstrates more inclusive learning conversations that promote broader student participation and mathematical thinking required by CCSS. Specific strategies and examples for each grade band are organized around NCTM content strands: Number and Operations, Geometry, Measurement, Algebra, and Data Analysis and Probability.
This illuminating history explores the complex relationship between mathematics, religious belief, and Victorian culture. Throughout history, application rather than abstraction has been the prominent driving force in mathematics. From the compass and sextant to partial differential equations, mathematical advances were spurred by the desire for better navigation tools, weaponry, and construction methods. But the religious upheaval in Victorian England and the fledgling United States opened the way for the rediscovery of pure mathematics, a tradition rooted in Ancient Greece. In Equations from God, Daniel J. Cohen captures the origins of the rebirth of abstract mathematics in the intellectual quest to rise above common existence and touch the mind of the deity. Using an array of published and private sources, Cohen shows how philosophers and mathematicians seized upon the beautiful simplicity inherent in mathematical laws to reconnect with the divine and traces the route by which the divinely inspired mathematics of the Victorian era begot later secular philosophies.
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.