In this volume, leading experts in mathematical manufacturing research and related fields review and update recent advances of mathematics in stochastic manufacturing systems and attempt to bridge the gap between theory and applications. The topics covered include scheduling and production planning, modeling of manufacturing systems, hierarchical control for large and complex systems, Markov chains, queueing networks, numerical methods for system approximations, singular perturbed systems, risk-sensitive control, stochastic optimization methods, discrete event systems, and statistical quality control.
This book articulates a new theory that shows that hierarchical decision making can in fact lead to a near optimization of system goals. The material in the book cuts across disciplines. It will appeal to graduate students and researchers in applied mathematics, operations management, operations research, and system and control theory.
One of the most important methods in dealing with the optimization of large, complex systems is that of hierarchical decomposition. The idea is to reduce the overall complex problem into manageable approximate problems or subproblems, to solve these problems, and to construct a solution of the original problem from the solutions of these simpler prob lems. Development of such approaches for large complex systems has been identified as a particularly fruitful area by the Committee on the Next Decade in Operations Research (1988) [42] as well as by the Panel on Future Directions in Control Theory (1988) [65]. Most manufacturing firms are complex systems characterized by sev eral decision subsystems, such as finance, personnel, marketing, and op erations. They may have several plants and warehouses and a wide variety of machines and equipment devoted to producing a large number of different products. Moreover, they are subject to deterministic as well as stochastic discrete events, such as purchasing new equipment, hiring and layoff of personnel, and machine setups, failures, and repairs.
This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.
In this monograph the authors develop a theory for the robust control of discrete-time stochastic systems, subjected to both independent random perturbations and to Markov chains. Such systems are widely used to provide mathematical models for real processes in fields such as aerospace engineering, communications, manufacturing, finance and economy. The theory is a continuation of the authors’ work presented in their previous book entitled "Mathematical Methods in Robust Control of Linear Stochastic Systems" published by Springer in 2006. Key features: - Provides a common unifying framework for discrete-time stochastic systems corrupted with both independent random perturbations and with Markovian jumps which are usually treated separately in the control literature; - Covers preliminary material on probability theory, independent random variables, conditional expectation and Markov chains; - Proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations; - Leads the reader in a natural way to the original results through a systematic presentation; - Presents new theoretical results with detailed numerical examples. The monograph is geared to researchers and graduate students in advanced control engineering, applied mathematics, mathematical systems theory and finance. It is also accessible to undergraduate students with a fundamental knowledge in the theory of stochastic systems.
Using a singular perturbation approach, this is a systematic treatment of those systems that naturally arise in queuing theory, control and optimisation, and manufacturing, gathering a number of ideas which were previously scattered throughout the literature. The book presents results on asymptotic expansions of the corresponding probability distributions, functional occupation measures, exponential upper bounds, and asymptotic normality. To bridge the gap between theory and applications, a large portion of the book is devoted to various applications, thus reducing the dimensionality for problems under Markovian disturbances and providing tools for dealing with large-scale and complex real-world situations. Much of this stems from the authors'recent research, presenting results which have not appeared elsewhere. An important reference for researchers in applied mathematics, probability and stochastic processes, operations research, control theory, and optimisation.
This book presents articles on original material from invited talks given at the ``IMS Workshop on Applied Probability'' organized by the Institute of Mathematical Sciences at the Chinese University of Hong Kong in May 1999. The goal of the workshop was to promote research in applied probability for local mathematicians and engineers and to foster exchange with experts from other parts of the world. The main themes were mathematical finance and stochastic networks. The topics range from the theoretical study, e.g., ergodic theory and diffusion processes, to very practical problems, such as convertible bonds with market risk and insider trading. The wide scope of coverage in the book make it a helpful reference for graduate students and researchers, and for practitioners working in mathematical finance.
This new 4th edition offers an introduction to optimal control theory and its diverse applications in management science and economics. It introduces students to the concept of the maximum principle in continuous (as well as discrete) time by combining dynamic programming and Kuhn-Tucker theory. While some mathematical background is needed, the emphasis of the book is not on mathematical rigor, but on modeling realistic situations encountered in business and economics. It applies optimal control theory to the functional areas of management including finance, production and marketing, as well as the economics of growth and of natural resources. In addition, it features material on stochastic Nash and Stackelberg differential games and an adverse selection model in the principal-agent framework. Exercises are included in each chapter, while the answers to selected exercises help deepen readers’ understanding of the material covered. Also included are appendices of supplementary material on the solution of differential equations, the calculus of variations and its ties to the maximum principle, and special topics including the Kalman filter, certainty equivalence, singular control, a global saddle point theorem, Sethi-Skiba points, and distributed parameter systems. Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as the foundation for the book, in which the author applies it to business management problems developed from his own research and classroom instruction. The new edition has been refined and updated, making it a valuable resource for graduate courses on applied optimal control theory, but also for financial and industrial engineers, economists, and operational researchers interested in applying dynamic optimization in their fields.
An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.