Some Basic Problems of the Mathematical Theory of Elasticity

Some Basic Problems of the Mathematical Theory of Elasticity

Author: N.I. Muskhelishvili

Publisher: Springer Science & Business Media

Published: 1977-04-30

Total Pages: 774

ISBN-13: 9789001607012

DOWNLOAD EBOOK

TO THE FIRST ENGLISH EDITION. In preparing this translation, I have taken the liberty of including footnotes in the main text or inserting them in small type at the appropriate places. I have also corrected minor misprints without special mention .. The Chapters and Sections of the original text have been called Parts and Chapters respectively, where the latter have been numbered consecutively. The subject index was not contained in the Russian original and the authors' index represents an extension of the original list of references. In this way the reader should be able to find quickly the pages on which anyone reference is discussed. The transliteration problem has been overcome by printing the names of Russian authors and journals also in Russian type. While preparing this translation in the first place for my own informa tion, the knowledge that it would also become accessible to a large circle of readers has made the effort doubly worthwhile. I feel sure that the reader will share with me in my admiration for the simplicity and lucidity of presentation.


Mathematical Theory of Elastic Structures

Mathematical Theory of Elastic Structures

Author: Kang Feng

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 407

ISBN-13: 3662032864

DOWNLOAD EBOOK

Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics.


Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden

Publisher: Courier Corporation

Published: 2012-10-25

Total Pages: 578

ISBN-13: 0486142272

DOWNLOAD EBOOK

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.


Some Basic Problems of the Mathematical Theory of Elasticity

Some Basic Problems of the Mathematical Theory of Elasticity

Author: N.I. Muskhelishvili

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 746

ISBN-13: 9401730342

DOWNLOAD EBOOK

TO THE FIRST ENGLISH EDITION. In preparing this translation, I have taken the liberty of including footnotes in the main text or inserting them in small type at the appropriate places. I have also corrected minor misprints without special mention .. The Chapters and Sections of the original text have been called Parts and Chapters respectively, where the latter have been numbered consecutively. The subject index was not contained in the Russian original and the authors' index represents an extension of the original list of references. In this way the reader should be able to find quickly the pages on which anyone reference is discussed. The transliteration problem has been overcome by printing the names of Russian authors and journals also in Russian type. While preparing this translation in the first place for my own informa tion, the knowledge that it would also become accessible to a large circle of readers has made the effort doubly worthwhile. I feel sure that the reader will share with me in my admiration for the simplicity and lucidity of presentation.


Mathematical Theory of Elastic Equilibrium

Mathematical Theory of Elastic Equilibrium

Author: Giuseppe Grioli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 177

ISBN-13: 3642874320

DOWNLOAD EBOOK

It is not my intention to present a treatise of elasticity in the follow ing pages. The size of the volume would not permit it, and, on the other hand, there are already excellent treatises. Instead, my aim is to develop some subjects not considered in the best known treatises of elasticity but nevertheless basic, either from the physical or the analytical point of view, if one is to establish a complete theory of elasticity. The material presented here is taken from original papers, generally very recent, and concerning, often, open questions still being studied by mathematicians. Most of the problems are from the theory of finite deformations [non-linear theory], but a part of this book concerns the theory of small deformations [linear theory], partly for its interest in many practical questions and partly because the analytical study of the theory of finite strain may be based on the infinitesimal one.


Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Author: Tian-You Fan

Publisher: Springer

Published: 2016-09-20

Total Pages: 462

ISBN-13: 9811019843

DOWNLOAD EBOOK

This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.


The Mathematical Theory of Elasticity

The Mathematical Theory of Elasticity

Author: Richard B. Hetnarski

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 837

ISBN-13: 143982889X

DOWNLOAD EBOOK

Through its inclusion of specific applications, The Mathematical Theory of Elasticity, Second Edition continues to provide a bridge between the theory and applications of elasticity. It presents classical as well as more recent results, including those obtained by the authors and their colleagues. Revised and improved, this edition incorporates add


An Introduction to the Mathematical Theory of Vibrations of Elastic Plates

An Introduction to the Mathematical Theory of Vibrations of Elastic Plates

Author: Raymond David Mindlin

Publisher: World Scientific

Published: 2006

Total Pages: 211

ISBN-13: 9812772499

DOWNLOAD EBOOK

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices. Sample Chapter(s). Chapter 1: Elements of the Linear Theory of Elasticity (416 KB). Contents: Elements of the Linear Theory of Elasticity; Solutions of the Three-Dimensional Equations; Infinite Power Series of Two-Dimensional Equations; Zero-Order Approximation; First-Order Approximation; Intermediate Approximations. Readership: Researchers in mechanics, civil and mechanical engineering and applied mathematics.