Mathematical and Numerical Modeling in Porous Media

Mathematical and Numerical Modeling in Porous Media

Author: Martin A. Diaz Viera

Publisher: CRC Press

Published: 2012-07-24

Total Pages: 370

ISBN-13: 0203113888

DOWNLOAD EBOOK

Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete


Modeling Phenomena of Flow and Transport in Porous Media

Modeling Phenomena of Flow and Transport in Porous Media

Author: Jacob Bear

Publisher: Springer

Published: 2018-01-25

Total Pages: 761

ISBN-13: 3319728261

DOWNLOAD EBOOK

This book presents and discusses the construction of mathematical models that describe phenomena of flow and transport in porous media as encountered in civil and environmental engineering, petroleum and agricultural engineering, as well as chemical and geothermal engineering. The phenomena of transport of extensive quantities, like mass of fluid phases, mass of chemical species dissolved in fluid phases, momentum and energy of the solid matrix and of fluid phases occupying the void space of porous medium domains are encountered in all these disciplines. The book, which can also serve as a text for courses on modeling in these disciplines, starts from first principles and focuses on the construction of well-posed mathematical models that describe all these transport phenomena.


Mathematical Modeling for Flow and Transport Through Porous Media

Mathematical Modeling for Flow and Transport Through Porous Media

Author: Gedeon Dagan

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 293

ISBN-13: 9401721998

DOWNLOAD EBOOK

The main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.


Modelling Water Flow in Unsaturated Porous Media

Modelling Water Flow in Unsaturated Porous Media

Author: Adam Szymkiewicz

Publisher: Springer Science & Business Media

Published: 2012-10-11

Total Pages: 254

ISBN-13: 364223559X

DOWNLOAD EBOOK

The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.


Modeling Density-Driven Flow in Porous Media

Modeling Density-Driven Flow in Porous Media

Author: Ekkehard O. Holzbecher

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 3642587674

DOWNLOAD EBOOK

Modeling of flow and transport in groundwater has become an important focus of scientific research in recent years. Most contributions to this subject deal with flow situations, where density and viscosity changes in the fluid are neglected. This restriction may not always be justified. The models presented in the book demonstrate immpressingly that the flow pattern may be completely different when density changes are taken into account. The main applications of the models are: thermal and saline convection, geothermal flow, saltwater intrusion, flow through salt formations etc. This book not only presents basic theory, but the reader can also test his knowledge by applying the included software and can set up own models.


Mathematical and Numerical Modeling in Porous Media

Mathematical and Numerical Modeling in Porous Media

Author: Martin A. Diaz Viera

Publisher: CRC Press

Published: 2012-07-24

Total Pages: 372

ISBN-13: 041566537X

DOWNLOAD EBOOK

Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.


Modelling Water Flow in Unsaturated Porous Media

Modelling Water Flow in Unsaturated Porous Media

Author: Adam Szymkiewicz

Publisher: Springer Science & Business Media

Published: 2012-10-11

Total Pages: 254

ISBN-13: 3642235581

DOWNLOAD EBOOK

The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.