Mathematical Miniatures

Mathematical Miniatures

Author: Svetoslav Savchev

Publisher: MAA

Published: 2003-02-27

Total Pages: 244

ISBN-13: 9780883856451

DOWNLOAD EBOOK

Rather than simply a collection of problems, this book can be thought of as both a tool chest of mathematical techniques and an anthology of mathematical verse. The authors have grouped problems so as to illustrate and highlight a number of important techniques and have provided enlightening solutions in all cases. As well as this there are essays on topics that are not only beautiful but also useful. The essays are diverse and enlivened by fresh, non-standard ideas. This book not only teaches techniques but gives a flavour of their past, present and possible future implications. It is a collection of miniature mathematical works in the fullest sense.


Thirty-three Miniatures

Thirty-three Miniatures

Author: Jiří Matoušek

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 196

ISBN-13: 0821849778

DOWNLOAD EBOOK

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)


Mathematical Delights

Mathematical Delights

Author: Ross Honsberger

Publisher: American Mathematical Soc.

Published: 2019-06-25

Total Pages: 264

ISBN-13: 1470451697

DOWNLOAD EBOOK

Mathematical Delights is a collection of 90 short elementary gems from algebra, geometry, combinatorics, and number theory. Ross Honsberger presents us with some surprising results, brilliant ideas, and beautiful arguments in mathematics, written in his wonderfully lucid style. The book is a mathematical entertainment to be read at a leisurely pace. High school mathematics should equip the reader to handle the problems presented in the book. The topics are entirely independent and can be read in any order. A useful set of indices helps the reader locate topics in the text.


Problem Posing and Solving for Mathematically Gifted and Interested Students

Problem Posing and Solving for Mathematically Gifted and Interested Students

Author: Deniz Sarikaya

Publisher: Springer Nature

Published: 2023-10-31

Total Pages: 234

ISBN-13: 3658410612

DOWNLOAD EBOOK

Mathematics and mathematics education research have an ongoing interest in improving our understanding of mathematical problem posing and solving. This book focuses on problem posing in a context of mathematical giftedness. The contributions particularly address where such problems come from, what properties they should have, and which differences between school mathematics and more complex kinds of mathematics exist. These perspectives are examined internationally, allowing for cross-national insights.


USA and International Mathematical Olympiads, 2003

USA and International Mathematical Olympiads, 2003

Author: Titu Andreescu

Publisher: MAA

Published: 2004

Total Pages: 106

ISBN-13: 9780883858172

DOWNLOAD EBOOK

The Mathematical Olympiad examinations, covering the USA Mathematical Olympiad (USAMO) and the International Mathematical Olympiad (IMO), have been published annually since 1976. This is the fourth volume in that series. The IMO is a world mathematics competition for high school students that takes place each year in a different country. Students from all over the world participate in this competition. These Olympiad style exams consist of several challenging essay-type problems. Although a correct and complete solution to an Olympiad problem often requires deep analysis and careful argument, the problems require no more than a solid background in high school mathematics coupled with a dose of mathematical ingenuity. There are helpful hints provided for each of the problems. These hints often help lead the student to a solution of the problem. Complete solutions to each of the problems is also included, and many of the problems are presented together with a collection of remarkable solutions developed by the examination committees, contestants and experts, during or after the contest. For each problem with multiple solutions, some common crucial results are presented at the beginning of these solutions.