Mathematical Methods And Models In Composites (Second Edition)

Mathematical Methods And Models In Composites (Second Edition)

Author: Vladislav Mantic

Publisher: World Scientific

Published: 2023-03-10

Total Pages: 731

ISBN-13: 1800611897

DOWNLOAD EBOOK

Mathematical Methods and Models in Composites (Second Edition) provides an in-depth treatment of modern and rigorous mathematical methods and models applied to composites modeling on the micro-, meso-, and macro scale. There has been a steady growth in the diversity of such methods and models that are used in the analysis and characterization of composites, their behavior, and their associated phenomena and processes. This second edition expands upon the success of the first edition, and has been substantially revised and updated.Written by well-known experts in different areas of applied mathematics, physics, and composite engineering, this book is mainly focused on continuous fiber reinforced composites and their ever increasing range of applications (for example, in the aerospace industry), though it also covers other kind of composites. The chapters cover a range of topics including, but not limited to: scaling and homogenization procedures in composites, thin plate and wave solutions in anisotropic materials, laminated structures, fiber-reinforced nonlinearly elastic solids, buckling and postbuckling, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing such as resin transfer molding. The results presented are useful for the design, fabrication, testing and industrial applications of composite components and structures.This book is an essential reference for graduate and doctoral students, as well as researchers in mathematics, physics and composite engineering. Explanations and references in the book are sufficiently detailed so as to provide the necessary background to further investigate the fascinating subject of composites modeling and explore relevant research literature. It is also suitable for non-experts who wish to have an overview of the mathematical methods and models used for composites, and of the open problems in this area that require further research.


Uncertainty Quantification Of Guided Wave Structural Health Monitoring For Aeronautical Composite Structures

Uncertainty Quantification Of Guided Wave Structural Health Monitoring For Aeronautical Composite Structures

Author: Nan Yue

Publisher: World Scientific

Published: 2024-01-10

Total Pages: 202

ISBN-13: 1800614713

DOWNLOAD EBOOK

This book presents a guided wave-based structural health monitoring (GWSHM) system for aeronautical composite structures. Particular attention is paid to the development of a reliable and reproducible system with the capability to detect and localise barely visible impact damage (BVID) in carbon-fibre-reinforced polymer (CFRP) structures.TThe authors introduce a novel sensor installation method that offers ease of application and replacement as well as excellent durability. Electromechanical Impedance (EMI) is also explored to assess the durability of the sensor installation methods in simulated aircraft operational conditions including thermal cycles, fatigue loading, and hot-wet conditions.Damage characterisation using GWSHM is described and used to investigate damage in different CFRP structures. Key issues in guided wave-based damage identification are addressed, including wave mode and frequency selection, the influence of dynamic load, the validity of simulated damage, and the sensitivity of guided waves to impact damage in different CFRP materials.The influence of temperature on guided wave propagation in anisotropic CFRP structures is described, and a novel baseline reconstruction approach for temperature compensation is presented. Finally, a multi-level hierarchical approach for the quantification of an ultrasonic GWSHM system is put forth.


Mathematical Methods And Models In Composites

Mathematical Methods And Models In Composites

Author: Vladislav Mantic

Publisher: World Scientific

Published: 2013-10-25

Total Pages: 521

ISBN-13: 178326411X

DOWNLOAD EBOOK

This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics covered include: scaling and homogenization procedures in composite structures, thin plate and wave solutions in anisotropic materials, laminated structures, instabilities, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing. The results presented are useful in the design, fabrication, testing, and industrial applications of composite components and structures. The book is written by well-known experts in different areas of applied mathematics, physics, and composite engineering and is an essential source of reference for graduate and doctoral students, as well as researchers. It is also suitable for non-experts in composites who wish to have an overview of both the mathematical methods and models used in this area and the related open problems requiring further research.


Mechanics of Laminated Composite Plates and Shells

Mechanics of Laminated Composite Plates and Shells

Author: J. N. Reddy

Publisher: CRC Press

Published: 2003-11-24

Total Pages: 864

ISBN-13: 9780203502808

DOWNLOAD EBOOK

The second edition of this popular text provides complete, detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. The book reflects advances in materials modeling in general and composite materials and structures in particular. It includes a chapter dedicated to the theory and analysis of laminated shells, discussions on smart structures and functionally graded materials, exercises and examples, and chapters that were reorganized from the first edition to improve the clarity of the presentation.


Materials and Contact Characterisation VIII

Materials and Contact Characterisation VIII

Author: C.A. Brebbia

Publisher: WIT Press

Published: 2017-09-20

Total Pages: 421

ISBN-13: 178466197X

DOWNLOAD EBOOK

Material and contact characterisation is a rapidly advancing field that requires the application of a combination of numerical and experimental methods. Including papers from the International Conference on Computational Methods and Experiments in Material and Contact Characterisation this volume presents the latest research in the field.


Essentials of Mathematical Methods in Science and Engineering

Essentials of Mathematical Methods in Science and Engineering

Author: Selcuk S. Bayin

Publisher: John Wiley & Sons

Published: 2019-12-04

Total Pages: 1105

ISBN-13: 1119580285

DOWNLOAD EBOOK

A comprehensive introduction to the multidisciplinary applications of mathematical methods, revised and updated The second edition of Essentials of Mathematical Methods in Science and Engineering offers an introduction to the key mathematical concepts of advanced calculus, differential equations, complex analysis, and introductory mathematical physics for students in engineering and physics research. The book’s approachable style is designed in a modular format with each chapter covering a subject thoroughly and thus can be read independently. This updated second edition includes two new and extensive chapters that cover practical linear algebra and applications of linear algebra as well as a computer file that includes Matlab codes. To enhance understanding of the material presented, the text contains a collection of exercises at the end of each chapter. The author offers a coherent treatment of the topics with a style that makes the essential mathematical skills easily accessible to a multidisciplinary audience. This important text: • Includes derivations with sufficient detail so that the reader can follow them without searching for results in other parts of the book • Puts the emphasis on the analytic techniques • Contains two new chapters that explore linear algebra and its applications • Includes Matlab codes that the readers can use to practice with the methods introduced in the book Written for students in science and engineering, this new edition of Essentials of Mathematical Methods in Science and Engineering maintains all the successful features of the first edition and includes new information.


Process Modeling in Composites Manufacturing

Process Modeling in Composites Manufacturing

Author: Suresh G. Advani

Publisher: CRC Press

Published: 2010-07-14

Total Pages: 628

ISBN-13: 1466580569

DOWNLOAD EBOOK

There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Edition provides tangible m


Introduction to Composite Materials Design, Second Edition

Introduction to Composite Materials Design, Second Edition

Author: Ever J. Barbero

Publisher: CRC Press

Published: 2010-07-07

Total Pages: 564

ISBN-13: 1420079158

DOWNLOAD EBOOK

Presenting a wealth of completely revised examples and new information, Introduction to Composite Materials Design, Second Edition greatly improves on the bestselling first edition. It incorporates state-of-the-art advances in knowledge and design methods that have taken place over the last 10 years, yet maintains the distinguishing features and vital content of the original. New material in this second edition: Introduces new background topics, including design for reliability and fracture mechanics Revises and updates information on polymer matrices, modern fibers (e.g., carbon nanotubes, Basalt, Vectran) and fiber forms such as textiles/fabrics Includes new information on Vacuum Assisted Resin Transfer Molding (VARTM) Incorporates major advances in prediction of unidirectional-lamina properties Reworks sections on material failure, including the most advanced prediction and design methodologies, such as in situ strength and Mohr-Coulomb criterion, etc. Covers all aspects of preliminary design, relegating finite element analysis to a separate textbook Discusses methodology used to perform damage mechanics analysis of laminated composites accounting for the main damage modes: longitudinal tension, longitudinal compression, transverse tension, in-plane shear, and transverse compression Presents in-depth analysis of composites reinforced with plain, twill, and satin weaves, as well as with random fiber reinforcements Expands the analysis of thin walled beams with newly developed examples and MATLAB® code Addresses external strengthening of reinforced-concrete beams, columns, and structural members subjected to both axial and bending loads The author distributes 78 fully developed examples throughout the book to illustrate the application of presented analysis techniques and design methodology, making this textbook ideally suited for self-study. Requiring no more than senior undergraduate-level understanding of math and mechanics, it remains an invaluable tool for students in the engineering disciplines, as well as for self-studying, practicing engineers.


Mathematical Modeling in Cultural Heritage

Mathematical Modeling in Cultural Heritage

Author: Elena Bonetti

Publisher: Springer Nature

Published: 2021-02-03

Total Pages: 170

ISBN-13: 3030580776

DOWNLOAD EBOOK

This work collects the contributions presented at the INdAM Workshop “Mathematical modeling and Analysis of degradation and restoration in Cultural Heritage – MACH2019” held in Rome in March 2019. The book is focused on mathematical modeling and simulation techniques with the aim of improving the current strategies of conservation and restoration in cultural heritage, sharing different experiences and approaches. The main topics are: corrosion and sulphation of materials, damage and fractures, stress in thermomechanical systems, contact and adhesion problems, phase transitions and reaction-diffusion models, restoration techniques, additive manufacturing. The final goal is to build a permanent bridge between the experts in cultural heritage and the mathematical community. The work is addressed to experts in cultural heritage and to mathematicians.