Mathematical Methods and Algorithms for Signal Processing
Author: Todd K. Moon
Publisher:
Published: 2005-02-01
Total Pages: 937
ISBN-13: 9788129709769
DOWNLOAD EBOOKRead and Download eBook Full
Author: Todd K. Moon
Publisher:
Published: 2005-02-01
Total Pages: 937
ISBN-13: 9788129709769
DOWNLOAD EBOOKAuthor: Richard E. Blahut
Publisher: Cambridge University Press
Published: 2010-06-24
Total Pages: 469
ISBN-13: 1139487957
DOWNLOAD EBOOKEfficient signal processing algorithms are important for embedded and power-limited applications since, by reducing the number of computations, power consumption can be reduced significantly. Similarly, efficient algorithms are also critical to very large scale applications such as video processing and four-dimensional medical imaging. This self-contained guide, the only one of its kind, enables engineers to find the optimum fast algorithm for a specific application. It presents a broad range of computationally-efficient algorithms, describes their structure and implementation, and compares their relative strengths for given problems. All the necessary background mathematics is included and theorems are rigorously proved, so all the information needed to learn and apply the techniques is provided in one convenient guide. With this practical reference, researchers and practitioners in electrical engineering, applied mathematics, and computer science can reduce power dissipation for low-end applications of signal processing, and extend the reach of high-end applications.
Author: Todd K. Moon
Publisher: Pearson
Published: 2000
Total Pages: 990
ISBN-13:
DOWNLOAD EBOOKThis previously included a CD. The CD contents can be accessed via World Wide Web.
Author: Todd K. Moon
Publisher: John Wiley & Sons
Published: 2005-06-06
Total Pages: 800
ISBN-13: 0471648000
DOWNLOAD EBOOKAn unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.
Author: John W. Leis
Publisher: John Wiley & Sons
Published: 2011-10-14
Total Pages: 352
ISBN-13: 1118033809
DOWNLOAD EBOOKQuickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.
Author: Allen B. Downey
Publisher: "O'Reilly Media, Inc."
Published: 2016-07-12
Total Pages: 172
ISBN-13: 149193851X
DOWNLOAD EBOOKIf you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.
Author: Wim van Drongelen
Publisher: Elsevier
Published: 2006-12-18
Total Pages: 319
ISBN-13: 008046775X
DOWNLOAD EBOOKSignal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Published: 2020-04-23
Total Pages: 392
ISBN-13: 1108569323
DOWNLOAD EBOOKThe fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Author: Dimitris G. Manolakis
Publisher: Cambridge University Press
Published: 2011-11-21
Total Pages: 1009
ISBN-13: 1139495739
DOWNLOAD EBOOKMaster the basic concepts and methodologies of digital signal processing with this systematic introduction, without the need for an extensive mathematical background. The authors lead the reader through the fundamental mathematical principles underlying the operation of key signal processing techniques, providing simple arguments and cases rather than detailed general proofs. Coverage of practical implementation, discussion of the limitations of particular methods and plentiful MATLAB illustrations allow readers to better connect theory and practice. A focus on algorithms that are of theoretical importance or useful in real-world applications ensures that students cover material relevant to engineering practice, and equips students and practitioners alike with the basic principles necessary to apply DSP techniques to a variety of applications. Chapters include worked examples, problems and computer experiments, helping students to absorb the material they have just read. Lecture slides for all figures and solutions to the numerous problems are available to instructors.
Author: Martin Vetterli
Publisher: Cambridge University Press
Published: 2014-09-04
Total Pages: 745
ISBN-13: 1139916572
DOWNLOAD EBOOKThis comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.