Mathematical Mechanics

Mathematical Mechanics

Author: Ellis D. Cooper

Publisher: World Scientific

Published: 2011

Total Pages: 390

ISBN-13: 9814289701

DOWNLOAD EBOOK

This unprecedented book offers all the details of the mathematical mechanics underlying state-of-the-art modeling of skeletal muscle contraction. The aim is to provide an integrated vision of mathematics, physics, chemistry and biology for this one understanding. The method is to take advantage of modern mathematical technology — Eilenberg-Mac Lane category theory, Robinson infinitesimal calculus and Kolmogorov probability theory — to examine a succession of distinguishable universes of particles, and continuous, thermodynamic, chemical, and molecular bodies, all with a focus on proofs by algebraic calculation without set theory. Also provided are metaphors and analogies, and careful distinction between representational pictures, mental model drawings, and mathematical diagrams.High school mathematics teachers, undergraduate and graduate college students, and researchers in mathematics, physics, chemistry, and biology may use this integrated publication to broaden their perspective on science, and to experience the precision that mathematical mechanics brings to understanding the muscular mechanism of nearly all animal behavior.


A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science

A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science

Author: Leon O. Chua

Publisher: World Scientific

Published: 2013

Total Pages: 579

ISBN-13: 9814460885

DOWNLOAD EBOOK

This text uncovers secret recipes from the abstract theory of one-dimensional cellular automata for predicting the long-term evolution of a ring of identical elementary cells where the binary state of each cell during each generation of an attractor is determined uniquely by the state of its left and right neighbors in the previous generation, as decreed by one of 256 truth tables.


Modeling, Analysis And Control Of Dynamical Systems With Friction And Impacts

Modeling, Analysis And Control Of Dynamical Systems With Friction And Impacts

Author: Pawel Olejnik

Publisher: #N/A

Published: 2017-07-07

Total Pages: 277

ISBN-13: 9813225300

DOWNLOAD EBOOK

This book is aimed primarily towards physicists and mechanical engineers specializing in modeling, analysis, and control of discontinuous systems with friction and impacts. It fills a gap in the existing literature by offering an original contribution to the field of discontinuous mechanical systems based on mathematical and numerical modeling as well as the control of such systems. Each chapter provides the reader with both the theoretical background and results of verified and useful computations, including solutions of the problems of modeling and application of friction laws in numerical computations, results from finding and analyzing impact solutions, the analysis and control of dynamical systems with discontinuities, etc. The contents offer a smooth correspondence between science and engineering and will allow the reader to discover new ideas. Also emphasized is the unity of diverse branches of physics and mathematics towards understanding complex piecewise-smooth dynamical systems. Mathematical models presented will be important in numerical experiments, experimental measurements, and optimization problems found in applied mechanics.


Nonlinear Dynamics Perspective Of Wolfram's New Kind Of Science, A (Volume Vi)

Nonlinear Dynamics Perspective Of Wolfram's New Kind Of Science, A (Volume Vi)

Author: Leon O Chua

Publisher: World Scientific

Published: 2013-07-10

Total Pages: 579

ISBN-13: 9814460893

DOWNLOAD EBOOK

This invaluable volume ends the quest to uncover the secret recipes for predicting the long-term evolution of a ring of identical elementary cells where the binary state of each cell during each generation of an attractor (i.e. after the transients had disappeared) is determined uniquely by the state of its left and right neighbors in the previous generation, as decreed by one of 256 truth tables. As befitting the contents aimed at school children, it was found pedagogically appealing to code each truth table by coloring each of the 8 vertices of a cubical graph in red (for binary state 1), or blue (for binary state 0), forming a toy universe of 256 Boolean cubes, each bearing a different vertex color combination.The corresponding collection of 256 distinct Boolean cubes are then segegrated logically into 6 distinct groups where members from each group share certain common dynamics which allow the long-term evolution of the color configuration of each bit string, of arbitrary length, to be predicted painlessly, via a toy-like gaming procedure, without involving any calculation. In particular, the evolution of any bit string bearing any initial color configuration which resides in any one of the possibly many distinct attractors, can be systematically predicted, by school children who are yet to learn arithmetic, via a simple recipe, for any Boolean cube belonging to group 1, 2, 3, or 4. The simple recipe for predicting the time-asymptotic behaviors of Boolean cubes belonging to groups 1, 2, and 3 has been covered in Vols. I, II, ..., V.This final volume continues the recipe for each of the 108, out of 256, local rules, dubbed the Bernoulli rules, belonging to group 4. Here, for almost half of the toy universe, surprisingly simple recipes involving only the following three pieces of information are derived in Vol. VI; namely, a positive integer τ, a positive, or negative, integer σ, and a sign parameter β > 0, or β 0. In particular, given any color configuration belonging to an attractor of any one of the 108 Boolean cubes from group 4, any child can predict the color configuration after τ generations, without any computation, by merely shifting each cell σ bits to the left (resp. right) if σ 0 (resp. σ


Integral Dynamical Models: Singularities, Signals And Control

Integral Dynamical Models: Singularities, Signals And Control

Author: Denis Sidorov

Publisher: World Scientific

Published: 2014-09-05

Total Pages: 258

ISBN-13: 9814619205

DOWNLOAD EBOOK

This volume provides a broad introduction to nonlinear integral dynamical models and new classes of evolutionary integral equations. It may be used as an advanced textbook by postgraduate students to study integral dynamical models and their applications in machine learning, electrical and electronic engineering, operations research and image analysis.


Nonlinear Dynamics Perspective Of Wolfram's New Kind Of Science, A (Volume V)

Nonlinear Dynamics Perspective Of Wolfram's New Kind Of Science, A (Volume V)

Author: Leon O Chua

Publisher: World Scientific

Published: 2012-03-13

Total Pages: 349

ISBN-13: 9814397563

DOWNLOAD EBOOK

This penultimate volume contains numerous original, elegant, and surprising results in 1-dimensional cellular automata. Perhaps the most exciting, if not shocking, new result is the discovery that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration. This is contrary to the well-known folklore that 256 local rules are necessary, leading to the new concept of quasi-global equivalence.Another surprising result is the introduction of a simple, yet explicit, infinite bit string called the super string S, which contains all random bit strings of finite length as sub-strings. As an illustration of the mathematical subtlety of this amazing discrete testing signal, the super string S is used to prove mathematically, in a trivial and transparent way, that rule 170 is as chaotic as a coin toss.Yet another unexpected new result, among many others, is the derivation of an explicit basin tree generation formula which provides an analytical relationship between the basin trees of globally-equivalent local rules. This formula allows the symbolic, rather than numerical, generation of the time evolution of any local rule corresponding to any initial bit-string configuration, from one of the 88 globally-equivalent local rules.But perhaps the most provocative idea is the proposal for adopting rule 137, over its three globally-equivalent siblings, including the heretofore more well-known rule 110, as the prototypical universal Turing machine.


Control Of Imperfect Nonlinear Electromechanical Large Scale Systems: From Dynamics To Hardware Implementation

Control Of Imperfect Nonlinear Electromechanical Large Scale Systems: From Dynamics To Hardware Implementation

Author: Luigi Fortuna

Publisher: World Scientific

Published: 2017-05-19

Total Pages: 147

ISBN-13: 9813227257

DOWNLOAD EBOOK

This book focuses on a class of uncertain systems that are called imperfect, and shows how much systems can regularly work if an appropriate control strategy is adopted. Along with some practical well studied examples, a formalization of the models for imperfect system is considered and a control strategy is proposed. Experimental case studies on electromechanical systems are also included.New concepts, experimental innovative circuits and laboratory details allow the reader to implement at low cost the outlined strategy. Emergent topics in nonlinear device realization are emphasized with the aim to allow researchers and students to perform experiments with large scale electromechanical systems. Moreover, the possibility of using imperfections and noise to generate nonlinear strange behavior is discussed.


Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Author: Anatoli? Mikha?lovich Samo?lenko

Publisher: World Scientific

Published: 2011

Total Pages: 323

ISBN-13: 9814329061

DOWNLOAD EBOOK

Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on the random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines: random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed.


Wave Momentum And Quasi-particles In Physical Acoustics

Wave Momentum And Quasi-particles In Physical Acoustics

Author: Gerard A Maugin

Publisher: World Scientific

Published: 2015-03-26

Total Pages: 250

ISBN-13: 9814663808

DOWNLOAD EBOOK

This unique volume presents an original approach to physical acoustics with additional emphasis on the most useful surface acoustic waves on solids. The study is based on foundational work of Léon Brillouin, and application of the celebrated invariance theorem of Emmy Noether to an element of volume that is representative of the wave motion.This approach provides an easy interpretation of typical wave motions of physical acoustics in bulk, at surfaces, and across interfaces, in the form of the motion of associated quasi-particles. This type of motion, Newtonian or not, depends on the wave motion considered, and on the original modeling of the continuum that supports it. After a thoughtful review of Brillouin's fundamental ideas related to radiative stresses, wave momentum and action, and the necessary reminder on modern nonlinear continuum thermomechanics, invariance theory and techniques of asymptotics, a variety of situations and models illustrates the power and richness of the approach and its strong potential in applications. Elasticity, piezoelectricity and new models of continua with nonlinearity, viscosity and some generalized features (microstructure, weak or strong nonlocality) or unusual situations (bounding surface with energy, elastic thin film glued on a surface waveguide), are considered, exhibiting thus the versatility of the approach.This original book offers an innovative vision and treatment of the problems of wave propagation in deformable solids. It opens up new horizons in the theoretical and applied facets of physical acoustics.


Critics and alternative theories

Critics and alternative theories

Author: Nikolay Chavarga

Publisher: Infinite Study

Published:

Total Pages: 500

ISBN-13:

DOWNLOAD EBOOK

The word “dissident” is used in a broad sense. It includes scientists proposing not fully accepted ideas within the Relativity-Quantum Mechanics paradigm as well as opponents to some aspects of these theories.