This is the first book by a sociologist devoted exclusively to a general sociology of mathematics. The author provides examples of different ways of thinking about mathematics sociologically. The survey of mathematical traditions covers ancient China, the Arabic-Islamic world, India, and Europe. Following the leads of classical social theorists such as Emile Durkheim, Restivo develops the idea that mathematical concepts and ideas are collective representations, and that it is mathematical communities that create mathematics, not individual mathematicians. The implications of the sociology of mathematics, and especially of pure mathematics, for a sociology of mind are also explored. In general, the author's objective is to explore, conjecture, suggest, and stimulate in order to introduce the sociological perspective on mathematics, and to broaden and deepen the still narrow, shallow path that today carries the sociology of mathematics. This book will interest specialists in the philosophy, history, and sociology of mathematics, persons interested in mathematics education, students of science and society, and people interested in current developments in the social and cultural analysis of science and mathematics.
The central topic of this book is the mathematical analysis of social systems, understood in the following rather classical way: social systems consist of social actors who interact according to specific rules of interactions; the dynamics of social systems is then the consequences of these interactions, viz., the self-organization of social systems. According to particular demands of their environment, social systems are able to behave in an adaptive manner, that is they can change their rules of interaction by certain meta rules and thus generate a meta dynamics. It is possible to model and analyse mathematically both dynamics and meta dynamics, using cellular automata and genetic algorithms. These tools allow social systems theory to be carried through as precisely as the theories of natural systems, a feat that has not previously been possible. Readership: Researchers and graduate students in the fields of theoretical sociology and social and general systems theory and other interested scientists. No specialised knowledge of mathematics and/or computer science is required.
A comprehensive textbook on the tools of mathematical sociology and their applications Mathematical models and computer simulations of complex social systems have become everyday tools in sociology. Yet until now, students had no up-to-date textbook from which to learn these techniques. Introduction to Mathematical Sociology fills this gap, providing undergraduates with a comprehensive, self-contained primer on the mathematical tools and applications that sociologists use to understand social behavior. Phillip Bonacich and Philip Lu cover all the essential mathematics, including linear algebra, graph theory, set theory, game theory, and probability. They show how to apply these mathematical tools to demography; patterns of power, influence, and friendship in social networks; Markov chains; the evolution and stability of cooperation in human groups; chaotic and complex systems; and more. Introduction to Mathematical Sociology also features numerous exercises throughout, and is accompanied by easy-to-use Mathematica-based computer simulations that students can use to examine the effects of changing parameters on model behavior. Provides an up-to-date and self-contained introduction to mathematical sociology Explains essential mathematical tools and their applications Includes numerous exercises throughout Features easy-to-use computer simulations to help students master concepts
Drawing upon field studies conducted in 1978, 1980 and 2001 with the Oksapmin, a remote Papua New Guinea group, Geoffrey B. Saxe traces the emergence of new forms of numerical representations and ideas in the social history of the community. In traditional life, the Oksapmin used a counting system that makes use of twenty-seven parts of the body; there is no evidence that the group used arithmetic in prehistory. As practices of economic exchange and schooling have shifted, children and adults unwittingly reproduced and altered the system in order to solve new kinds of numerical and arithmetical problems, a process that has led to new forms of collective representations in the community. While Dr Saxe's focus is on the Oksapmin, the insights and general framework he provides are useful for understanding shifting representational forms and emerging cognitive functions in any human community.
Extends the ideas of social constructivism to the philosophy of mathematics, developing a powerful critique of traditional absolutist conceptions of mathematics, and proposing a reconceptualization of the philosophy of mathematics.
Empower students to be the change—join the teaching mathematics for social justice movement! We live in an era in which students have —through various media and their lived experiences— a more visceral experience of social, economic, and environmental injustices. However, when people think of social justice, mathematics is rarely the first thing that comes to mind. Through model lessons developed by over 30 diverse contributors, this book brings seemingly abstract high school mathematics content to life by connecting it to the issues students see and want to change in the world. Along with expert guidance from the lead authors, the lessons in this book explain how to teach mathematics for self- and community-empowerment. It walks teachers step-by-step through the process of using mathematics—across all high school content domains—as a tool to explore, understand, and respond to issues of social injustice including: environmental injustice; wealth inequality; food insecurity; and gender, LGBTQ, and racial discrimination. This book features: Content cross-referenced by mathematical concept and social issues Downloadable instructional materials for student use User-friendly and logical interior design for daily use Guidance for designing and implementing social justice lessons driven by your own students’ unique passions and challenges Timelier than ever, teaching mathematics through the lens of social justice will connect content to students’ daily lives, fortify their mathematical understanding, and expose them to issues that will make them responsive citizens and leaders in the future.
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.
In this unique collection, more than 30 articles show how to weave social justice issues throughout the mathematics curriculum, as well as how to integrate mathematics into other curricular areas. Rethinking Mathematics offers teaching ideas, lesson plans, and reflections by practitioners and mathematics educators. This is real-world math-math that helps students analyze problems as they gain essential academic skills. This book offers hope and guidance for teachers to enliven and strengthen their math teaching. It will deepen students' understanding of society and help prepare them to be critical, active participants in a democracy. Blending theory and practice, this is the only resource of its kind.
This book sets out a generative structuralist conception of general theoretical sociology; its philosophy, its problems, and its methods. The field is defined as a comprehensive research tradition with many intersecting subtraditions that share conceptual components.