Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models

Author: Evarist Giné

Publisher: Cambridge University Press

Published: 2021-03-25

Total Pages: 706

ISBN-13: 1009022784

DOWNLOAD EBOOK

In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.


Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models

Author: Evarist Giné

Publisher: Cambridge University Press

Published: 2015-11-18

Total Pages: 705

ISBN-13: 1316445178

DOWNLOAD EBOOK

In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.


Probability with Martingales

Probability with Martingales

Author: David Williams

Publisher: Cambridge University Press

Published: 1991-02-14

Total Pages: 274

ISBN-13: 9780521406055

DOWNLOAD EBOOK

This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.


Probabilistic Symmetries and Invariance Principles

Probabilistic Symmetries and Invariance Principles

Author: Olav Kallenberg

Publisher: Springer Science & Business Media

Published: 2005-07-27

Total Pages: 536

ISBN-13: 9780387251158

DOWNLOAD EBOOK

This is the first comprehensive treatment of the three basic symmetries of probability theory—contractability, exchangeability, and rotatability—defined as invariance in distribution under contractions, permutations, and rotations. Originating with the pioneering work of de Finetti from the 1930's, the theory has evolved into a unique body of deep, beautiful, and often surprising results, comprising the basic representations and invariance properties in one and several dimensions, and exhibiting some unexpected links between the various symmetries as well as to many other areas of modern probability. Most chapters require only some basic, graduate level probability theory, and should be accessible to any serious researchers and graduate students in probability and statistics. Parts of the book may also be of interest to pure and applied mathematicians in other areas. The exposition is formally self-contained, with detailed references provided for any deeper facts from real analysis or probability used in the book. Olav Kallenberg received his Ph.D. in 1972 from Chalmers University in Gothenburg, Sweden. After teaching for many years at Swedish universities, he moved in 1985 to the US, where he is currently Professor of Mathematics at Auburn University. He is well known for his previous books Random Measures (4th edition, 1986) and Foundations of Modern Probability (2nd edition, 2002) and for numerous research papers in all areas of probability. In 1977, he was the second recipient ever of the prestigious Rollo Davidson Prize from Cambridge University. In 1991–94, he served as the Editor in Chief of Probability Theory and Related Fields. Professor Kallenberg is an elected fellow of the Institute of Mathematical Statistics.


Statistical Foundations of Data Science

Statistical Foundations of Data Science

Author: Jianqing Fan

Publisher: CRC Press

Published: 2020-09-21

Total Pages: 974

ISBN-13: 0429527616

DOWNLOAD EBOOK

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


A Modern Approach to Probability Theory

A Modern Approach to Probability Theory

Author: Bert E. Fristedt

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 775

ISBN-13: 1489928375

DOWNLOAD EBOOK

Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.


Foundations of Data Science

Foundations of Data Science

Author: Avrim Blum

Publisher: Cambridge University Press

Published: 2020-01-23

Total Pages: 433

ISBN-13: 1108617360

DOWNLOAD EBOOK

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.