Mathematical Foundations of Computer Science 2013

Mathematical Foundations of Computer Science 2013

Author: Krishnendu Chatterjee

Publisher: Springer

Published: 2013-08-16

Total Pages: 869

ISBN-13: 3642403131

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence.


Mathematical Foundations of Computer Science

Mathematical Foundations of Computer Science

Author: G. Shanker Rao

Publisher: I. K. International Pvt Ltd

Published: 2006

Total Pages: 450

ISBN-13: 8188237493

DOWNLOAD EBOOK

Mathematical Foundations of Computer Science explains the fundamental concepts in mathematics. It can be used by the students in computer science as an introduction to the underlying ideas of mathematics for computer science. It explains topics like mathematical logic, predicates, relations, functions, combinatorics, algebraic structures and graph theory. It would be useful for the students of B.Tech, BCA, & MCA. Key Features: " Comprehensive discussion on logic, function, algebraic systems, recurrence relations and graph theory " Wide variety of exercises at all levels " Several worked out examples


Concrete Mathematics

Concrete Mathematics

Author: Ronald L. Graham

Publisher: Addison-Wesley Professional

Published: 1994-02-28

Total Pages: 811

ISBN-13: 0134389980

DOWNLOAD EBOOK

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.


Mathematical Foundation for Computer Science

Mathematical Foundation for Computer Science

Author: M. Vasanthi

Publisher: Alpha Science International, Limited

Published: 2013

Total Pages: 0

ISBN-13: 9781842657416

DOWNLOAD EBOOK

This textbook covers mathematical logic, normal forms, graphs, trees and relations. The emphasis in the book is on the presentation of fundamentals and theoretical concepts in an intelligible and easy to understand manner. Every topic is illustrated with a number of problems of increasing complexities which will help the beginner understand the fundamentals involved and enable them to solve various problems.


Mathematical Foundations of Computer Science

Mathematical Foundations of Computer Science

Author: Bhavanari Satyanarayana

Publisher: CRC Press

Published: 2019-08-29

Total Pages: 366

ISBN-13: 1000702715

DOWNLOAD EBOOK

Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka


Mathematical Foundations of Computer Science 2014

Mathematical Foundations of Computer Science 2014

Author: Ersébet Csuhaj-Varjú

Publisher: Springer

Published: 2014-08-12

Total Pages: 659

ISBN-13: 3662444658

DOWNLOAD EBOOK

This two volume set LNCS 8634 and LNCS 8635 constitutes the refereed conference proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science, MFCS 2014, held in Budapest, Hungary, in August 2014. The 95 revised full papers presented together with 6 invited talks were carefully selected from 270 submissions. The focus of the conference was on following topics: Logic, Semantics, Automata, Theory of Programming, Algorithms, Complexity, Parallel and Distributed Computing, Quantum Computing, Automata, Grammars and Formal Languages, Combinatorics on Words, Trees and Games.


Mathematical Foundations of Computer Science 2015

Mathematical Foundations of Computer Science 2015

Author: Giuseppe F. Italiano

Publisher: Springer

Published: 2015-08-10

Total Pages: 633

ISBN-13: 3662480549

DOWNLOAD EBOOK

This two volume set LNCS 9234 and 9235 constitutes the refereed conference proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science, MFCS 2015, held in Milan, Italy, in August 2015. The 82 revised full papers presented together with 5 invited talks were carefully selected from 201 submissions. The papers feature high-quality research in all branches of theoretical computer science. They have been organized in the following topical main sections: logic, semantics, automata, and theory of programming (volume 1) and algorithms, complexity, and games (volume 2).


Foundation Mathematics for Computer Science

Foundation Mathematics for Computer Science

Author: John Vince

Publisher: Springer

Published: 2015-07-27

Total Pages: 341

ISBN-13: 3319214373

DOWNLOAD EBOOK

John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.


MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, Second Edition

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, Second Edition

Author: BATHUL, SHAHNAZ

Publisher: PHI Learning Pvt. Ltd.

Published: 2015-10-31

Total Pages: 481

ISBN-13: 8120351290

DOWNLOAD EBOOK

This book, in its Second Edition, provides the basic concepts and applications of discrete mathematics and graph theory. The book is aimed at undergraduate students of computer science and engineering, and information technology. It is also suitable for undergraduate and postgraduate students of computer science, mathematics and computer applications. The book exposes the students to fundamental knowledge in: - Mathematical logic, tautology and normal forms - Elementary set theory, functions and their relations - Algebraic structure, binary operation, group theory and homomorphism - Theory of permutations and combinations, binomial and multinomial theorems - Recurrence relations and methods of solving them - Graph theory, spanning tree, Eulerian and Hamiltonian circuits and isomorphism Key Features Includes a large number of worked-out problems for sound understanding of the concepts. Offers chapter-end exercises to test students’ comprehension of theory. Gives a quiz section at the end of each chapter to help students prepare for the competitive examinations. Incorporates short questions asked in universities’ examinations.


Mathematics for Computer Science

Mathematics for Computer Science

Author: Eric Lehman

Publisher:

Published: 2017-03-08

Total Pages: 988

ISBN-13: 9789888407064

DOWNLOAD EBOOK

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.