Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.
Written by experts from all over the world, the book comprises the latest applications of mathematical and models in food engineering and fermentation. It provides the fundamentals on statistical methods to solve standard problems associated with food engineering and fermentation technology. Combining theory with a practical, hands-on approach, this book covers key aspects of food engineering. Presenting cuttingedge information, the book is an essential reference on the fundamental concepts associated with food engineering.
Easy Statistics for Food Science with R presents the application of statistical techniques to assist students and researchers who work in food science and food engineering in choosing the appropriate statistical technique. The book focuses on the use of univariate and multivariate statistical methods in the field of food science. The techniques are presented in a simplified form without relying on complex mathematical proofs. This book was written to help researchers from different fields to analyze their data and make valid decisions. The development of modern statistical packages makes the analysis of data easier than before. The book focuses on the application of statistics and correct methods for the analysis and interpretation of data. R statistical software is used throughout the book to analyze the data. - Contains numerous step-by-step tutorials help the reader to learn quickly - Covers the theory and application of the statistical techniques - Shows how to analyze data using R software - Provides R scripts for all examples and figures
Statistical experimental design is currently used as a quality control technique to achieve product excellence at the lowest overall cost. It can also function as a powerful tool to optimize food products and/or processes, to accelerate food development cycles, reduce research costs, facilitate the transition of products from research and development to manufacturing and troubleshoot manufacturing problems. Food Product Design: A Computer-Aided Statistical Approach familiarizes readers with the methodology of statistical experimental design, and its application in food product design, with the aid of commonly available modern commercial software. Food Product Design presents basic concepts of food product design, then focuses on the most effective statistical techniques and corresponding computer applications for trial design, modeling, and experimental data analysis. The book presents very few theories about mathematics and statistics. Instead, it contains detailed descriptions of how to use popular computer software to solve the real mathematical and statistical problems that occur in product design. Even those with very limited knowledge of statistics and mathematics will find this a useful and highly practical book. Food Product Design: A Computer-Aided Statistical Approach will be a valuable tool for professional food engineers, technologists, scientists, and industrial personnel who want to update and expand their knowledge about computer-aided statistical methods in the field of food product design. Those involved in applied research at universities in food and agriculture, biological and chemical engineering, and statistics will also find it useful and informative.
The recording and analysis of food data are becoming increasingly sophisticated. Consequently, the food scientist in industry or at study faces the task of using and understanding statistical methods. Statistics is often viewed as a difficult subject and is often avoided because of its complexity and a lack of specific application to the requirements of food science. This situation is changing – there is now much material on multivariate applications for the more advanced reader, but a case exists for a univariate approach aimed at the non-statistician. This second edition of Statistical Methods for Food Science provides a source text on accessible statistical procedures for the food scientist, and is aimed at professionals and students in food laboratories where analytical, instrumental and sensory data are gathered and require some form of summary and analysis before interpretation. It is suitable for the food analyst, the sensory scientist and the product developer, and others who work in food-related disciplines involving consumer survey investigations will also find many sections of use. There is an emphasis on a ‘hands-on’ approach, and worked examples using computer software packages and the minimum of mathematical formulae are included. The book is based on the experience and practice of a scientist engaged for many years in research and teaching of analytical and sensory food science at undergraduate and post-graduate level. This revised and updated second edition is accompanied by a new companion website giving the reader access to the datasets and Excel spreadsheets featured in the book. Check it out now by visiting www.wiley.com/go/bower/statistical or by scanning the QR code below.
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods
The Institute of Food Technologists (IFT) recently endorsed the use of computers in food science education. The minimum standards for degrees in food science, as suggested by IFT,"require the students to use computers in the solution of problems, the collection and analysis of data, the control processes, in addition to word processing."Because they are widely used in business, allow statistical and graphical of experimental data, and can mimic laboratory experimentation, spreadsheets provide an ideal tool for learning the important features of computers and programming. In addition, they are ideally suited for food science students, who usually do not have an extensive mathematical background.Drawing from the many courses he has taught at UC Davis, Dr. Singh covers the general basics of spreadsheets using examples specific to food science. He includes more than 50 solved problems drawn from key areas of food science, namely food microbiology, food chemistry, sensory evaluation, statistical quality control, and food engineering. Each problem is presented with the required equations and detailed steps necessary for programming the spreadsheet. Helpful hints in using the spreadsheets are also provided throughout the text.Key Features* The first book to integrate speadsheets in teaching food science and technology* Includes more than 50 solved examples of spreadsheet use in food science and engineering* Presents a step-by-step introduction to spreadsheet use* Provides a food composition database on a computer disk
Here in one easy-to-understand volume are the statistical procedures and techniques the agricultural researcher needs to know in order to design, implement, analyze, and interpret the results of most experiments with crops. Designed specifically for the non-statistician, this valuable guide focuses on the practical problems of the field researcher. Throughout, it emphasizes the use of statistics as a tool of research—one that will help pinpoint research problems and select remedial measures. Whenever possible, mathematical formulations and statistical jargon are avoided. Originally published by the International Rice Research Institute, this widely respected guide has been totally updated and much expanded in this Second Edition. It now features new chapters on the analysis of multi-observation data and experiments conducted over time and space. Also included is a chapter on experiments in farmers' fields, a subject of major concern in developing countries where agricultural research is commonly conducted outside experiment stations. Statistical Procedures for Agricultural Research, Second Edition will prove equally useful to students and professional researchers in all agricultural and biological disciplines. A wealth of examples of actual experiments help readers to choose the statistical method best suited for their needs, and enable even the most complicated procedures to be easily understood and directly applied. An International Rice Research Institute Book
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.