Nonstandard Finite Difference Schemes: Methodology And Applications

Nonstandard Finite Difference Schemes: Methodology And Applications

Author: Ronald E Mickens

Publisher: World Scientific

Published: 2020-11-11

Total Pages: 332

ISBN-13: 981122255X

DOWNLOAD EBOOK

This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.


Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations

Author: Ronald E. Mickens

Publisher: World Scientific

Published: 1994

Total Pages: 264

ISBN-13: 9810214588

DOWNLOAD EBOOK

This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.


The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods

Author: Susanne Brenner

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 369

ISBN-13: 1475736584

DOWNLOAD EBOOK

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide


Applications of Nonstandard Finite Difference Schemes

Applications of Nonstandard Finite Difference Schemes

Author: Ronald E. Mickens

Publisher: World Scientific

Published: 2000

Total Pages: 268

ISBN-13: 9789810241339

DOWNLOAD EBOOK

The main purpose of this book is to provide a concise introduction to the methods and philosophy of constructing nonstandard finite difference schemes and illustrate how such techniques can be applied to several important problems. Chapter I gives an overview of the subject and summarizes previous work. Chapters 2 and 3 consider in detail the construction and numerical implementation of schemes for physical problems involving convection-diffusion-reaction equations, that arise in groundwater pollution and scattering of electromagnetic waves using Maxwell's equations. Chapter 4 examines certain mathematical issues related to the nonstandard discretization of competitive and cooperative models for ecology. The application chapters illustrate well the power of nonstandard methods. In particular, for the same accuracy as obtained by standard techniques, larger step sizes can be used. This volume will satisfy the needs of scientists, engineers, and mathematicians who wish to know how to construct nonstandard schemes and see how these are applied to obtain numerical solutions of the differential equations which arise in the study of nonlinear dynamical systems modeling important physical phenomena.


The R Book

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

Published: 2007-06-13

Total Pages: 953

ISBN-13: 9780470515068

DOWNLOAD EBOOK

The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.


Differential Models

Differential Models

Author: Alexander Solodov

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 252

ISBN-13: 9783540208525

DOWNLOAD EBOOK

Differential equations are often used in mathematical models for technological processes or devices. However, the design of a differential mathematical model iscrucial anddifficult in engineering. As a hands-on approach to learn how to pose a differential mathematical modelthe authors have selected 9 examples with important practical application and treat them as following:- Problem-setting and physical model formulation- Designing the differential mathematical model- Integration of the differential equations- Visualization of results Each step of the development ofa differential model isenriched by respective Mathcad 11commands, todays necessary linkage of engineering significance and high computing complexity. TOC:Differential Mathematical Models.- Integrable Differential Equations.- Dynamic Model of the System with Heat Engineering.- Stiff Differential Equations.- Heat Transfer near the Critical Point.- The Faulkner- Skan Equation of Boundary Layer.- The Rayleigh Equation: Hydronamic Instability.- Kinematic Waves of Concentration in Ion- Exchange Filters.- Kinematic Shock Waves.- Numerical Modelling of the CPU-board Temperature Field.- Temperature Waves.


Introduction to Aircraft Flight Mechanics

Introduction to Aircraft Flight Mechanics

Author: Thomas R. Yechout

Publisher: AIAA

Published: 2003

Total Pages: 666

ISBN-13: 9781600860782

DOWNLOAD EBOOK

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.


The Mathematical Experience, Study Edition

The Mathematical Experience, Study Edition

Author: Philip Davis

Publisher: Springer Science & Business Media

Published: 2011-10-28

Total Pages: 522

ISBN-13: 0817682953

DOWNLOAD EBOOK

Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.


The Toolbox Revisited

The Toolbox Revisited

Author: Clifford Adelman

Publisher:

Published: 2006

Total Pages: 232

ISBN-13:

DOWNLOAD EBOOK

The Toolbox Revisited is a data essay that follows a nationally representative cohort of students from high school into postsecondary education, and asks what aspects of their formal schooling contribute to completing a bachelor's degree by their mid-20s. The universe of students is confined to those who attended a four-year college at any time, thus including students who started out in other types of institutions, particularly community colleges.


Mathematical Economics

Mathematical Economics

Author: Vasily E. Tarasov

Publisher: MDPI

Published: 2020-06-03

Total Pages: 278

ISBN-13: 303936118X

DOWNLOAD EBOOK

This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.