Provides the methodological advances in applying advanced modeling techniques to road pricing. This book discusses topics such as: fundamentals of traffic equilibrium problems; principle of marginal-cost road pricing; models and algorithms for the general second-best road pricing problems; social and spatial equities; Pareto pricing; and more.
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory
th It is our great privilege and honor to present the proceedings of the 18 International Symposium on Transportation and Traffic Theory (ISTTT), held at The Hong Kong Polytechnic University in Hong Kong, China on 16-18 July 2009. th The 18 ISTTT is jointly organized by the Hong Kong Society for Transportation Studies and Department of Civil and Structural Engineering of The Hong Kong Polytechnic University. The ISTTT series is the main gathering for the world’s transportation and traffic theorists, and those who are interested in contributing to or gaining a deep understanding of traffic and transportation phenomena in order to better plan, design and manage the transportation system. Although it embraces a wide range of topics, from traffic flow theories and demand modeling to road safety and logistics and supply chain modeling, the ISTTT is hallmarked by its intellectual innovation, research and development excellence in the treatment of real-world transportation and traffic problems. The ISTTT prides itself in the extremely high quality of its proceedings. Previous ISTTT conferences were held in Warren, Michigan (1959), London (1963), New York (1965), Karlsruhe (1968), Berkeley, California (1971), Sydney (1974), Kyoto (1977), Toronto (1981), Delft (1984), Cambridge, Massachusetts (1987), Yokohama (1990), Berkeley, California (1993), Lyon (1996), Jerusalem (1999), Adelaide (2002), College Park, Maryland (2005), and London (2007). th th This 18 ISTTT celebrates the 50 Anniversary of this premier conference series.
Introduction to Network Traffic Flow Theory: Principles, Concepts, Models, and Methods provides a comprehensive introduction to modern theories for modeling, mathematical analysis and traffic simulations in road networks. The book breaks ground, addressing traffic flow theory in a network setting and providing researchers and transportation professionals with a better understanding of how network traffic flows behave, how congestion builds and dissipates, and how to develop strategies to alleviate network traffic congestion. The book also shows how network traffic flow theory is key to understanding traffic estimation, control, management and planning. Users wills find this to be a great resource on both theory and applications across a wide swath of subjects, including road networks and reduced traffic congestion. - Covers the most theoretically and practically relevant network traffic flow theories - Provides a systematic introduction to traditional and recently developed models, including cell transmission, link transmission, link queue, point queue, macroscopic and microscopic models, junction models and network stationary states - Applies modern network traffic flow theory to real-world applications in modeling, analysis, estimation, control, management and planning
Congestion and traffic-related pollution are increasingly becoming major issues in towns and cities world-wide. This book deals with carefully selected market and non-market based measures to reduce congestion, and their implementation and effectiveness in tackling the problem. The book features a multi-authored research-based text comprising 12 individual chapters that draw upon relevant case studies. The authors were specifically chosen for their global expertise in terms of the respective Demand Management Tools. Drawing on international case studies, the book details the role played internationally by selected Transport Demand Management (TDM) measures in dealing with both congestion and traffic-related pollution in urban areas, focusing on their relative merits and in particular their effectiveness and the issues surrounding implementation.
Rigorous treatments of issues related to congestion pricing are described in this book. It examines recent advances in areas such as mathematical and computational models for predicting traffic congestion, determining when, where, and how much to levy tolls, and analyzing the impact on transportation systems. The book follows recent schemes judged to be successful in London, Singapore, Norway, as well as a number of projects in the United States.
Maximizing reader insights into the interactions between game theory, excessive crowding and safety and security elements, this book establishes a new research angle by illustrating linkages between different research approaches and through laying the foundations for subsequent analysis. Congestion (excessive crowding) is defined in this work as all kinds of flows; e.g., road/sea/air traffic, people, data, information, water, electricity, and organisms. Analysing systems where congestion occurs – which may be in parallel, series, interlinked, or interdependent, with flows one way or both ways – this book puts forward new congestion models, breaking new ground by introducing game theory and safety/security into proceedings. Addressing the multiple actors who may hold different concerns regarding system reliability; e.g. one or several terrorists, a government, various local or regional government agencies, or others with stakes for or against system reliability, this book describes how governments and authorities may have the tools to handle congestion, but that these tools need to be improved whilst additionally ensuring safety and security against various threats. This game-theoretic analysis sets this book apart from the current congestion literature and ensures that the book will be of use to postgraduates, researchers, 3rd/4th-year undergraduates, policy makers, and practitioners.
Forecasting Urban Travel presents in a non-mathematical way the evolution of methods, models and theories underpinning travel forecasts and policy analysis, from the early urban transportation studies of the 1950s to current applications throughout the
This book introduces the advances in synchromodal logistics and provides a framework to classify various optimisation problems in this field. It explores the application of this framework to solve a broad range of problems, such as problems with and without a central decision-maker, problems with and without full information, deterministic problems, problems coping with uncertainty, optimisation of a full network design problem. It covers theoretical constructs, such as discrete optimisation, robust optimisation, optimisation under uncertainty, multi-objective optimisation and agent based equilibrium models. Moreover, practical elaborated use cases are presented to deepen understanding. The book gives both researchers and practitioners a good overview of the field of synchromodal optimisation problems and offers the reader practical methods for modelling and problem-solving.