Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems

Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems

Author: Jiri Nedoma

Publisher: John Wiley & Sons

Published: 2011-06-09

Total Pages: 458

ISBN-13: 1118006461

DOWNLOAD EBOOK

Cutting-edge solutions to current problems in orthopedics, supported by modeling and numerical analysis Despite the current successful methods and achievements of good joint implantations, it is essential to further optimize the shape of implants so they may better resist extreme long-term mechanical demands. This book provides the orthopedic, biomechanical, and mathematical basis for the simulation of surgical techniques in orthopedics. It focuses on the numerical modeling of total human joint replacements and simulation of their functions, along with the rigorous biomechanics of human joints and other skeletal parts. The book includes: An introduction to the anatomy and biomechanics of the human skeleton, biomaterials, and problems of alloarthroplasty The definition of selected simulated orthopedic problems Constructions of mathematical model problems of the biomechanics of the human skeleton and its parts Replacement parts of the human skeleton and corresponding mathematical model problems Detailed mathematical analyses of mathematical models based on functional analysis and finite element methods Biomechanical analyses of particular parts of the human skeleton, joints, and corresponding replacements A discussion of the problems of data processing from nuclear magnetic resonance imaging and computer tomography This timely book offers a wealth of information on the current research in this field. The theories presented are applied to specific problems of orthopedics. Numerical results are presented and discussed from both biomechanical and orthopedic points of view and treatment methods are also briefly addressed. Emphasis is placed on the variational approach to the investigated model problems while preserving the orthopedic nature of the investigated problems. The book also presents a study of algorithmic procedures based on these simulation models. This is a highly useful tool for designers, researchers, and manufacturers of joint implants who require the results of suggested experiments to improve existing shapes or to design new shapes. It also benefits graduate students in orthopedics, biomechanics, and applied mathematics.


Algorithms in Computational Molecular Biology

Algorithms in Computational Molecular Biology

Author: Mourad Elloumi

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 1027

ISBN-13: 1118101987

DOWNLOAD EBOOK

This book represents the most comprehensive and up-to-date collection of information on the topic of computational molecular biology. Bringing the most recent research into the forefront of discussion, Algorithms in Computational Molecular Biology studies the most important and useful algorithms currently being used in the field, and provides related problems. It also succeeds where other titles have failed, in offering a wide range of information from the introductory fundamentals right up to the latest, most advanced levels of study.


Modern Computational Methods

Modern Computational Methods

Author: Herbert Koenig

Publisher: CRC Press

Published: 1998-08-01

Total Pages: 324

ISBN-13: 9781560324683

DOWNLOAD EBOOK

This book is an introduction to computational mechanics, proceeding from basic computational tools to advanced computational procedures and applications. Emphasis is placed on the numerical techniques and how they form the bases for algorithms. Numerous worked examples in structural mechanics, heat transfer, fluid flow, and biomechanics are given with the numerical codes to illustrate how the methods are applied. A concluding section addresses advanced applications in such areas as finite volume methods and biomechanics.


Research Methods in Biomechanics, 2E

Research Methods in Biomechanics, 2E

Author: Gordon Robertson

Publisher: Human Kinetics

Published: 2013-09-25

Total Pages: 442

ISBN-13: 0736093400

DOWNLOAD EBOOK

Detailing up-to-date research technologies and approaches, Research Methods in Biomechanics, Second Edition, assists both beginning and experienced researchers in developing methods for analyzing and quantifying human movement.


Applied Biomechatronics Using Mathematical Models

Applied Biomechatronics Using Mathematical Models

Author: Jorge Garza Ulloa

Publisher: Academic Press

Published: 2018-06-16

Total Pages: 664

ISBN-13: 0128125950

DOWNLOAD EBOOK

Applied Biomechatronics Using Mathematical Models provides an appropriate methodology to detect and measure diseases and injuries relating to human kinematics and kinetics. It features mathematical models that, when applied to engineering principles and techniques in the medical field, can be used in assistive devices that work with bodily signals. The use of data in the kinematics and kinetics analysis of the human body, including musculoskeletal kinetics and joints and their relationship to the central nervous system (CNS) is covered, helping users understand how the complex network of symbiotic systems in the skeletal and muscular system work together to allow movement controlled by the CNS. With the use of appropriate electronic sensors at specific areas connected to bio-instruments, we can obtain enough information to create a mathematical model for assistive devices by analyzing the kinematics and kinetics of the human body. The mathematical models developed in this book can provide more effective devices for use in aiding and improving the function of the body in relation to a variety of injuries and diseases. - Focuses on the mathematical modeling of human kinematics and kinetics - Teaches users how to obtain faster results with these mathematical models - Includes a companion website with additional content that presents MATLAB examples


Classification Analysis of DNA Microarrays

Classification Analysis of DNA Microarrays

Author: Leif E. Peterson

Publisher: John Wiley & Sons

Published: 2013-06-24

Total Pages: 752

ISBN-13: 0470170816

DOWNLOAD EBOOK

Wiley Series in Bioinformatics: Computational Techniques and Engineering Yi Pan and Albert Y. Zomaya, Series Editors Wide coverage of traditional unsupervised and supervised methods and newer contemporary approaches that help researchers handle the rapid growth of classification methods in DNA microarray studies Proliferating classification methods in DNA microarray studies have resulted in a body of information scattered throughout literature, conference proceedings, and elsewhere. This book unites many of these classification methods in a single volume. In addition to traditional statistical methods, it covers newer machine-learning approaches such as fuzzy methods, artificial neural networks, evolutionary-based genetic algorithms, support vector machines, swarm intelligence involving particle swarm optimization, and more. Classification Analysis of DNA Microarrays provides highly detailed pseudo-code and rich, graphical programming features, plus ready-to-run source code. Along with primary methods that include traditional and contemporary classification, it offers supplementary tools and data preparation routines for standardization and fuzzification; dimensional reduction via crisp and fuzzy c-means, PCA, and non-linear manifold learning; and computational linguistics via text analytics and n-gram analysis, recursive feature extraction during ANN, kernel-based methods, ensemble classifier fusion. This powerful new resource: Provides information on the use of classification analysis for DNA microarrays used for large-scale high-throughput transcriptional studies Serves as a historical repository of general use supervised classification methods as well as newer contemporary methods Brings the reader quickly up to speed on the various classification methods by implementing the programming pseudo-code and source code provided in the book Describes implementation methods that help shorten discovery times Classification Analysis of DNA Microarrays is useful for professionals and graduate students in computer science, bioinformatics, biostatistics, systems biology, and many related fields.


Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis

Author: Ion Mandoiu

Publisher: John Wiley & Sons

Published: 2016-09-12

Total Pages: 462

ISBN-13: 1119272165

DOWNLOAD EBOOK

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Multiple Biological Sequence Alignment

Multiple Biological Sequence Alignment

Author: Ken Nguyen

Publisher: John Wiley & Sons

Published: 2016-07-18

Total Pages: 256

ISBN-13: 1118229045

DOWNLOAD EBOOK

Covers the fundamentals and techniques of multiple biological sequence alignment and analysis, and shows readers how to choose the appropriate sequence analysis tools for their tasks This book describes the traditional and modern approaches in biological sequence alignment and homology search. This book contains 11 chapters, with Chapter 1 providing basic information on biological sequences. Next, Chapter 2 contains fundamentals in pair-wise sequence alignment, while Chapters 3 and 4 examine popular existing quantitative models and practical clustering techniques that have been used in multiple sequence alignment. Chapter 5 describes, characterizes and relates many multiple sequence alignment models. Chapter 6 describes how traditionally phylogenetic trees have been constructed, and available sequence knowledge bases can be used to improve the accuracy of reconstructing phylogeny trees. Chapter 7 covers the latest methods developed to improve the run-time efficiency of multiple sequence alignment. Next, Chapter 8 covers several popular existing multiple sequence alignment server and services, and Chapter 9 examines several multiple sequence alignment techniques that have been developed to handle short sequences (reads) produced by the Next Generation Sequencing technique (NSG). Chapter 10 describes a Bioinformatics application using multiple sequence alignment of short reads or whole genomes as input. Lastly, Chapter 11 provides a review of RNA and protein secondary structure prediction using the evolution information inferred from multiple sequence alignments. • Covers the full spectrum of the field, from alignment algorithms to scoring methods, practical techniques, and alignment tools and their evaluations • Describes theories and developments of scoring functions and scoring matrices •Examines phylogeny estimation and large-scale homology search Multiple Biological Sequence Alignment: Scoring Functions, Algorithms and Applications is a reference for researchers, engineers, graduate and post-graduate students in bioinformatics, and system biology and molecular biologists. Ken Nguyen, PhD, is an associate professor at Clayton State University, GA, USA. He received his PhD, MSc and BSc degrees in computer science all from Georgia State University. His research interests are in databases, parallel and distribute computing and bioinformatics. He was a Molecular Basis of Disease fellow at Georgia State and is the recipient of the highest graduate honor at Georgia State, the William M. Suttles Graduate Fellowship. Xuan Guo, PhD, is a postdoctoral associate at Oak Ridge National Lab, USA. He received his PhD degree in computer science from Georgia State University in 2015. His research interests are in bioinformatics, machine leaning, and cloud computing. He is an editorial assistant of International Journal of Bioinformatics Research and Applications. Yi Pan, PhD, is a Regents' Professor of Computer Science and an Interim Associate Dean and Chair of Biology at Georgia State University. He received his BE and ME in computer engineering from Tsinghua University in China and his PhD in computer science from the University of Pittsburgh. Dr. Pan's research interests include parallel and distributed computing, optical networks, wireless networks and bioinformatics. He has published more than 180 journal papers with about 60 papers published in various IEEE/ACM journals. He is co-editor along with Albert Y. Zomaya of the Wiley Series in Bioinformatics.


Biological Knowledge Discovery Handbook

Biological Knowledge Discovery Handbook

Author: Mourad Elloumi

Publisher: John Wiley & Sons

Published: 2015-02-04

Total Pages: 1126

ISBN-13: 1118853725

DOWNLOAD EBOOK

The first comprehensive overview of preprocessing, mining, and postprocessing of biological data Molecular biology is undergoing exponential growth in both the volume and complexity of biological data and knowledge discovery offers the capacity to automate complex search and data analysis tasks. This book presents a vast overview of the most recent developments on techniques and approaches in the field of biological knowledge discovery and data mining (KDD) providing in-depth fundamental and technical field information on the most important topics encountered. Written by top experts, Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data covers the three main phases of knowledge discovery (data preprocessing, data processing also known as data mining and data postprocessing) and analyzes both verification systems and discovery systems. BIOLOGICAL DATA PREPROCESSING Part A: Biological Data Management Part B: Biological Data Modeling Part C: Biological Feature Extraction Part D Biological Feature Selection BIOLOGICAL DATA MINING Part E: Regression Analysis of Biological Data Part F Biological Data Clustering Part G: Biological Data Classification Part H: Association Rules Learning from Biological Data Part I: Text Mining and Application to Biological Data Part J: High-Performance Computing for Biological Data Mining Combining sound theory with practical applications in molecular biology, Biological Knowledge Discovery Handbook is ideal for courses in bioinformatics and biological KDD as well as for practitioners and professional researchers in computer science, life science, and mathematics.