This book gives an introduction to the highly interdisciplinary field of biomaterials. It concisely summarizes properties, synthesis and modification of materials such as metals, ceramics, polymers or composites. Characterization, in vitro and in vivo testing as well as a selection of various applications are also part of this inevitable guide.
Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians
The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.
Biomedical Materials provides a comprehensive discussion of contemporary biomaterials research and development. Highlighting important topics associated with Engineering, Medicine and Surgery, this volume reaches a wide scope of professionals, researchers and graduate students involved with biomaterials. A pedagogical writing style and structure provides readers with an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments. Written by leading researchers in the field, this text book takes readers to the forefront of biomedical materials development, providing them with a taste of how the field is changing, while also serving as a useful reference to physicians and engineers.
No book has been published that gives a detailed description of all the types of plastic materials used in medical devices, the unique requirements that the materials need to comply with and the ways standard plastics can be modified to meet such needs. This book will start with an introduction to medical devices, their classification and some of the regulations (both US and global) that affect their design, production and sale. A couple of chapters will focus on all the requirements that plastics need to meet for medical device applications. The subsequent chapters describe the various types of plastic materials, their properties profiles, the advantages and disadvantages for medical device applications, the techniques by which their properties can be enhanced, and real-world examples of their use. Comparative tables will allow readers to find the right classes of materials suitable for their applications or new product development needs.
Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic. - Highlights the most well-known applications of thermoset and thermoplastic polymers in biological and biomedical engineering - Presents novel opportunities and ideas for developing or improving technologies in materials for companies, those in biomedical industries, and others - Features at least 50% of references from the last 2-3 years
Structurally the work is demarcated into the six most popular areas of research: (1) biocompatibility of nanomaterials with living organisms in their various manifestations (2) nanobiosensors for clinical diagnostics, detecting biomolecules which are useful in the clinical diagnosis of genetic, metabolically acquired, induced or infectious disease (3) targeted drug delivery for nanomaterials in their various modifications (4) nanomedical devices and structures which are used in the development of implantable medical devices and structures such as nanorobots (5) nanopharmacology, as novel nanoparticles are increasingly engineered to diagnose conditions and recognize pathogens, identify ideal pharmaceutical agents to treat the condition or pathogens, fuel high-yield production of matched pharmaceuticals (potentially in vivo), locate, attach or enter target tissue,
MATERIALS FOR BIOMEDICAL ENGINEERING A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. Materials for Biomedical Engineering: Fundamentals and Applications provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications Features a thorough overview of the history, properties, and applications of biomaterials Includes numerous homework, review, and examination problems, full references, and further reading suggestions Materials for Biomedical Engineering: Fundamentals and Applications is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.
Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties—including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties—and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications. - Unlocks the potential of lignin-based materials with advanced properties for cutting-edge applications in areas such as drug delivery, gene delivery and tissue engineering - Presents state-of-the-art methodologies used in the development of lignin-based nanoparticles, hydrogels, aerogels and nanofibers - Explains the fundamentals of lignin, including structure and composition, extraction and isolation methods, types and properties, chemical modifications, and characterization techniques
The study of electromagnetic fields in the treatment of various diseases is not a new one; however, we are still learning how magnetic fields impact the human body and its organs. Many novel magnetic materials and technologies could potentially transform medicine. Magnetic Materials and Technologies for Medical Applications explores these current and emerging technologies. Beginning with foundational knowledge on the basics of magnetism, this book then details the approaches and methods used in the creation of novel magnetic materials and devices. This book also discusses current technologies and applications, as well as the commercial aspects of introducing new technologies to the field. This book serves as an excellent introduction for early career researchers or a reference to more experienced researchers who wish to stay abreast of current trends and developing technologies in the field. This book could also be used by clinicians working in medicine and companies interested in establishing new medical technologies. Each chapter provides novel tasks for future scientific and technology research studies. - Outlines the basics of magnetism for enhanced understanding of its applications in medicine - Covers novel magnetic devices as well as technologies still under development, including magnetic brain stimulation, biosensors, and nanoparticles for drug delivery - Explores commercial opportunities and obstacles to market entry for new magnetic materials and technologies for the medical field