Vibration Assisted Machining

Vibration Assisted Machining

Author: Lu Zheng

Publisher: John Wiley & Sons

Published: 2021-02-16

Total Pages: 210

ISBN-13: 1119506352

DOWNLOAD EBOOK

The first book to comprehensively address the theory, kinematic modelling, numerical simulation and applications of vibration assisted machining Vibration Assisted Machining: Theory, Modelling and Applications covers all key aspects of vibration assisted machining, including cutting kinematics and dynamics, the effect of workpiece materials and wear of cutting tools. It also addresses practical applications for these techniques. Case studies provide detailed guidance on the design, modeling and testing of VAM systems. Experimental machining methods are also included, alongside considerations of state-of-the-art research developments on cutting force modeling and surface texture generation. Advances in computational modelling, surface metrology and manufacturing science over the past few decades have led to tremendous benefits for industry. This is the first comprehensive book dedicated to design, modelling, simulation and integration of vibration assisted machining system and processes, enabling wider industrial application of the technology. This book enables engineering students and professionals in manufacturing to understand and implement the latest vibration assisted machining techniques. Highlights include: Comprehensive coverage of the theory, kinematics modelling, numerical simulation and applications of vibration assisted machining (VAM) Case studies with detailed guidance on design, modelling and testing of VAM systems, as well as experimental machining methods Discussion of state-of-the-art research developments on cutting force modelling and surface texture generation Coverage of the history of VAM, its current applications and future directions for the technology Vibration Assisted Machining: Theory, Modelling and Applications provides engineering students, researchers, manufacturing engineers, production supervisors, tooling engineers, planning and application engineers and machine tool designers with the fundamentals of vibration assisted machining, along with methodologies for developing and implementing the technology to solve practical industry problems.


Vibration Assisted Machining

Vibration Assisted Machining

Author: Lu Zheng

Publisher: John Wiley & Sons

Published: 2021-02-05

Total Pages: 270

ISBN-13: 1119506328

DOWNLOAD EBOOK

The first book to comprehensively address the theory, kinematic modelling, numerical simulation and applications of vibration assisted machining Vibration Assisted Machining: Theory, Modelling and Applications covers all key aspects of vibration assisted machining, including cutting kinematics and dynamics, the effect of workpiece materials and wear of cutting tools. It also addresses practical applications for these techniques. Case studies provide detailed guidance on the design, modeling and testing of VAM systems. Experimental machining methods are also included, alongside considerations of state-of-the-art research developments on cutting force modeling and surface texture generation. Advances in computational modelling, surface metrology and manufacturing science over the past few decades have led to tremendous benefits for industry. This is the first comprehensive book dedicated to design, modelling, simulation and integration of vibration assisted machining system and processes, enabling wider industrial application of the technology. This book enables engineering students and professionals in manufacturing to understand and implement the latest vibration assisted machining techniques. Highlights include: Comprehensive coverage of the theory, kinematics modelling, numerical simulation and applications of vibration assisted machining (VAM) Case studies with detailed guidance on design, modelling and testing of VAM systems, as well as experimental machining methods Discussion of state-of-the-art research developments on cutting force modelling and surface texture generation Coverage of the history of VAM, its current applications and future directions for the technology Vibration Assisted Machining: Theory, Modelling and Applications provides engineering students, researchers, manufacturing engineers, production supervisors, tooling engineers, planning and application engineers and machine tool designers with the fundamentals of vibration assisted machining, along with methodologies for developing and implementing the technology to solve practical industry problems.


Vibration Assisted Machining

Vibration Assisted Machining

Author: Wei Bai

Publisher: Springer Nature

Published: 2023-02-17

Total Pages: 221

ISBN-13: 9811991316

DOWNLOAD EBOOK

Vibration assisted machining is becoming a potential machining process for difficult-to-cut materials in aerospace and biomedical applications. This book presents the fundamentals, modelling and applications of vibration assisted machining process. It provides investigations on cutting forces, temperature, cutting stability, surface topography, microstructure evolution and tool wear in vibration assisted machining. Three representative regimes (i.e., ultrasonically assisted machining, modulation assisted machining and elliptical vibration machining) are investigated in this book. The systematic and in-depth research in this process will provide important theoretical and practical reference for researchers and engineers in relative fields.


Metal Machining

Metal Machining

Author: P.R.N. Childs

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 420

ISBN-13: 0080524028

DOWNLOAD EBOOK

Metal machining is the most widespread metal-shaping process in the mechanical manufacturing industry. World-wide investment in metal machining tools increases year on year - and the wealth of nations can be judged by it. This text - the most up-to-date in the field - provides in-depth discussion of the theory and application of metal machining at an advanced level. It begins with an overview of the development of metal machining and its role in the current industrial environment and continues with a discussion of the theory and practice of machining. The underlying mechanics are analysed in detail and there are extensive chapters examining applications through a discussion of simulation and process control. "Metal Machining: Theory and Applications" is essential reading for senior undergraduates and postgraduates specialising in cutting technology. It is also an invaluable reference tool for professional engineers. Professors Childs, Maekawa, Obikawa and Yamane are four of the leading authorities on metal machining and have worked together for many years.Of interest to all mechanical, manufacturing and materials engineersTheoretical and practical problems addressed


Machining of Titanium Alloys

Machining of Titanium Alloys

Author: J. Paulo Davim

Publisher: Springer

Published: 2014-07-05

Total Pages: 154

ISBN-13: 3662439026

DOWNLOAD EBOOK

This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.


Metal Cutting Theory and Practice

Metal Cutting Theory and Practice

Author: David A. Stephenson

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 1381

ISBN-13: 1315360314

DOWNLOAD EBOOK

A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors’ extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations. The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints. Comprised of 17 chapters, this detailed study: Describes the common machining operations used to produce specific shapes or surface characteristics Contains conventional and advanced cutting tool technologies Explains the properties and characteristics of tools which influence tool design or selection Clarifies the physical mechanisms which lead to tool failure and identifies general strategies for reducing failure rates and increasing tool life Includes common machinability criteria, tests, and indices Breaks down the economics of machining operations Offers an overview of the engineering aspects of MQL machining Summarizes gear machining and finishing methods for common gear types, and more Metal Cutting Theory and Practice, Third Edition emphasizes the physical understanding and analysis for robust process design, troubleshooting, and improvement, and aids manufacturing engineering professionals, and engineering students in manufacturing engineering and machining processes programs.


Machining Technology for Composite Materials

Machining Technology for Composite Materials

Author: H Hocheng

Publisher: Elsevier

Published: 2011-11-28

Total Pages: 488

ISBN-13: 0857095145

DOWNLOAD EBOOK

Machining processes play an important role in the manufacture of a wide variety of components. While the processes required for metal components are well-established, they cannot always be applied to composite materials, which instead require new and innovative techniques. Machining technology for composite materials provides an extensive overview and analysis of both traditional and non-traditional methods of machining for different composite materials.The traditional methods of turning, drilling and grinding are discussed in part one, which also contains chapters analysing cutting forces, tool wear and surface quality. Part two covers non-traditional methods for machining composite materials, including electrical discharge and laser machining, among others. Finally, part three contains chapters that deal with special topics in machining processes for composite materials, such as cryogenic machining and processes for wood-based composites.With its renowned editor and distinguished team of international contributors, Machining technology for composite materials is an essential reference particularly for process designers and tool and production engineers in the field of composite manufacturing, but also for all those involved in the fabrication and assembly of composite structures, including the aerospace, marine, civil and leisure industry sectors. - Provides an extensive overview of machining methods for composite materials - Chapters analyse cutting forces, tool wear and surface quality - Cryogenic machining and processes for wood based composites are discussed


Advances in Machining of Composite Materials

Advances in Machining of Composite Materials

Author: Islam Shyha

Publisher: Springer Nature

Published: 2021-06-21

Total Pages: 547

ISBN-13: 3030714381

DOWNLOAD EBOOK

This book covers a wide range of conventional and non-conventional machining processes of various composite materials, including polymer and metallic-based composites, nanostructured composites and green/natural composites. It presents state-of-the-art academic work and industrial developments in material fabrication, machining, modelling and applications, together with current practices and requirements for producing high-quality composite components. There are also dedicated chapters on physical properties and fabrication techniques of different composite material groups. The book also has chapters on health and safety considerations when machining composite materials and recycling composite materials. The contributors present machining composite materials in terms of operating conditions; cutting tools; appropriate machines; and typical damage patterns following machining operations. This book serves as a useful reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, and machine tool designers. It can also benefit final-year undergraduate and postgraduate students, as it provides comprehensive information on the machining of composite materials to produce high-quality final components. The book chapters were authored by experienced academics and researchers from four continents and nine countries including Canada, China, Egypt, India, Malaysia, Portugal, Singapore, United Kingdom and the USA.


Comprehensive Materials Processing

Comprehensive Materials Processing

Author:

Publisher: Newnes

Published: 2014-04-07

Total Pages: 5485

ISBN-13: 0080965334

DOWNLOAD EBOOK

Comprehensive Materials Processing, Thirteen Volume Set provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources


Non-traditional Micromachining Processes

Non-traditional Micromachining Processes

Author: Golam Kibria

Publisher: Springer

Published: 2017-03-07

Total Pages: 431

ISBN-13: 3319520091

DOWNLOAD EBOOK

This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.