Material Characterization of a Dielectric Elastomer for the Design of a Linear Actuator

Material Characterization of a Dielectric Elastomer for the Design of a Linear Actuator

Author: Alexander Tristan Helal

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Electrical motors and/or hydraulics and pneumatics cylinders are commonly used methods of actuation in mechanical systems. Over the last two decades, due to arising market needs, novel self-independent mobile systems such as mobility assistive devices have emerged with the help of new advancements in technology. The actuation criteria for these devices differ greatly from typical mechanical systems, which has made the implementation of classical actuators difficult within modern assistive devices. Among the numerous challenges, limited energy storage capabilities by mobile systems have restricted their achievable operational time. Furthermore, new expectations for device weight and volume, as well as actuator structural compliance, have added to this quandary. Electroactive polymers, a category of smart materials, have emerged as a strong contender for the use in low-cost efficient actuators. They have demonstrated great potential in soft robotic and assistive device/prosthetic applications due to their actuation potential and similar mechanical behaviour to human skeletal muscles. Dielectric Elastomers, in particular, have shown very promising properties for these types of applications. Their structures have shown large achievable deformation, while remaining light-weight, mechanically efficient, and low-cost. This thesis aims to characterize, and model the behaviour of 3MTM VHB polyacrylic dielectric elastomer, in order to establish a foundation for its implementation in a proposed novel linear actuator concept. In this thesis, a comprehensive experimental evaluation is accomplished, which resulted in the better understanding of the elastomer's biaxial mechanical and electro-mechanically coupled behaviours. Subsequently, a constitutive biaxial mechanical model was derived in order to provide a predictive design equation for future actuator development. This model proved effective in providing a predictive tool for the biaxial mechanical tensile response of the material. Finally, a simplified prototype was devised as a proof of concept. This first iteration applied experimental findings to validate the working principles behind the proposed actuator design. The results confirmed the proof of concept, through achieved reciprocal linear motion, and provided insight into the design considerations for prototype optimization and final actuator development.


Dielectric Elastomers as Electromechanical Transducers

Dielectric Elastomers as Electromechanical Transducers

Author: Federico Carpi

Publisher: Elsevier

Published: 2011-09-06

Total Pages: 344

ISBN-13: 0080557724

DOWNLOAD EBOOK

Dielectric Elastomers as Electromechanical Transducers provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as “smart or “intelligent , include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologies, based on so-called ElectroActive Polymers (EAP), have gained considerable attention. EAP offer the potential for performance exceeding other smart materials, while retaining the cost and versatility inherent to polymer materials. Within the EAP family, “dielectric elastomers , are of particular interest as they show good overall performance, simplicity of structure and robustness. Dielectric elastomer transducers are rapidly emerging as high-performance “pseudo-muscular actuators, useful for different kinds of tasks. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction is enabling an enormous range of new applications that were precluded to any other EAP or smart-material technology until recently. This book provides a comprehensive and updated insight into dielectric elastomer transduction, covering all its fundamental aspects. The book deals with transduction principles, basic materials properties, design of efficient device architectures, material and device modelling, along with applications. Concise and comprehensive treatment for practitioners and academics Guides the reader through the latest developments in electroactive-polymer-based technology Designed for ease of use with sections on fundamentals, materials, devices, models and applications


Modeling, Processing, and Characterization of Dielectric Elastomer Actuators and Sensors

Modeling, Processing, and Characterization of Dielectric Elastomer Actuators and Sensors

Author: Kevin Kadooka

Publisher:

Published: 2017

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

Over the past two decades, electroactive polymers (EAP) have been studied as a material for soft actuator and sensor systems. Dielectric elastomers (DE) are an EAP material which relies on the electrostatic force produced on compliant electrodes to produce deformation. In the converse sense, DE sensors can be used by measuring the electrical energy or impedance change produced under deformation. The two key limitations barring DE from commercial use are high driving voltage, and low output force. The scope of this work is as follows: to improve upon these two limitations by processing of actuators by a pneumatic dispenser, by adding tactile sensing and variable stiffness properties to the actuators, and developing a mechanical model to predict the actuator behavior. This work focuses specifically on the unimorph dielectric elastomer actuator (DEA), which consists of a DE laminate which contracts in the thickness direction and expands in-plane under applied voltage, and is constrained on one face by a passive material, resulting in bending of the structure. The first part of the work is devoted to fabrication, modeling, and characterization of multilayer unimorph DEA. Fabrication is done using two schemes – the first is a conventional one, using commercially available DE films, and the second is a novel method using a robotic dispenser system. The latter technique has two objectives. The first is to reduce the thickness of the DE layers to reduce driving voltage, since the DE deformation is proportional to the square of the applied electric field which itself is inversely proportional to electrode separation. The second is to deposit higher-performance DE materials, in this case, PVDF terpolymer, which exhibits large actuation stresses because of its high dielectric constant and relatively high Young’s modulus. Using the dispenser, DE layers with 10 μm thick layers are repeatably produced, requiring actuation voltages one order of magnitude less than conventional thick DE films. Standard deviation of displacement and blocking force do not exceed 10% and 15% of the mean after 2 minutes of deformation, respectively. Elastic and viscoelastic models are developed for multilayer unimorph DEA consisting of flat and curved geometries. Both models were validated in comparison with experimental data with the latter shown to agree with the experimental data to within one standard deviation of the mean for majority of the deformation. The second section demonstrates the novel use of electrolaminates to create variable stiffness DEA (VSDEA). Variable stiffness structures are of particular interest for soft actuators, because they allow switching between a low stiffness, high displacement mode and a high stiffness mode with large holding force. One device is demonstrated by simply utilizing the passive layer of a DEA as part of an electrolaminate, allowing for four-fold increase in bending rigidity. Another device is demonstrated consisting of a bundle of parallel DEA with electrostatic chucking features to modulate shear strength of the interfaces. This device exhibits a 39-fold increase in stiffness, and a claw actuator using these actuators is capable of lifting an object 17 times its own weight. The final part of this work investigates two novel tactile sensors based on dielectric elastomers (DES). The first uses a dome-shaped protrusion to redistribute tactile forces onto an array of four capacitive sensors. The change in capacitance of the four sensors is used to measure and discriminate the force components of the impinging force. An array of these dome DES are fabricated using the dispenser system, and the ability to differentiate between normal and shear forces was demonstrated, as well as its proximity sensing ability. The tactile sensor array is also shown integrated as the passive layer of a DEA, providing tactile and proximity sensing capability to the actuator. The second tactile sensor features high resolution and scalability, and is built in to a medical assistive device coined the “artery mapper” and is used to determine the location of a target artery for arterial line placement. It is demonstrated locating an artery on a test subject, possible due to its force resolution on the order of 2.8 kPa.


Electroactivity in Polymeric Materials

Electroactivity in Polymeric Materials

Author: Lenore Rasmussen

Publisher: Springer Science & Business Media

Published: 2012-03-02

Total Pages: 163

ISBN-13: 1461408776

DOWNLOAD EBOOK

Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles. The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.


Electroactive Polymer (EAP) Actuators as Artificial Muscles

Electroactive Polymer (EAP) Actuators as Artificial Muscles

Author: Yoseph Bar-Cohen

Publisher: SPIE Press

Published: 2004

Total Pages: 790

ISBN-13: 9780819452979

DOWNLOAD EBOOK

Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.


Soft Robotics in Rehabilitation

Soft Robotics in Rehabilitation

Author: Amir Jafari

Publisher: Academic Press

Published: 2021-02-20

Total Pages: 280

ISBN-13: 0128185392

DOWNLOAD EBOOK

Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book


Endorobotics

Endorobotics

Author: Luigi Manfredi

Publisher: Academic Press

Published: 2022-01-04

Total Pages: 410

ISBN-13: 012821760X

DOWNLOAD EBOOK

The book comprises three parts. The first part provides the state-of-the-art of robots for endoscopy (endorobots), including devices already available in the market and those that are still at the R&D stage. The second part focusses on the engineering design; it includes the use of polymers for soft robotics, comparing their advantages and limitations with those of their more rigid counterparts. The third part includes the project management of a multidisciplinary team, the health cost of current technology, and how a cost-effective device can have a substantial impact on the market. It also includes information on data governance, ethical and legal frameworks, and all steps needed to make this new technology available. Focuses on a new design paradigm for endorobots applications Provides a unique collection of engineering, medical and management contributions for endorobotics design Describes endorobotics, starting from available devices in both clinical use and academia