Markov Processes, Feller Semigroups and Evolution Equations

Markov Processes, Feller Semigroups and Evolution Equations

Author: J. A. van Casteren

Publisher: World Scientific

Published: 2011

Total Pages: 825

ISBN-13: 9814322180

DOWNLOAD EBOOK

The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.


Generators of Markov Chains

Generators of Markov Chains

Author: Adam Bobrowski

Publisher: Cambridge University Press

Published: 2021

Total Pages: 279

ISBN-13: 1108495796

DOWNLOAD EBOOK

A clear explanation of what an explosive Markov chain does after it passes through all available states in finite time.


Markov Processes, Semigroups and Generators

Markov Processes, Semigroups and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011-03-29

Total Pages: 449

ISBN-13: 311025011X

DOWNLOAD EBOOK

Markov processes represent a universal model for a large variety of real life random evolutions. The wide flow of new ideas, tools, methods and applications constantly pours into the ever-growing stream of research on Markov processes that rapidly spreads over new fields of natural and social sciences, creating new streamlined logical paths to its turbulent boundary. Even if a given process is not Markov, it can be often inserted into a larger Markov one (Markovianization procedure) by including the key historic parameters into the state space. This monograph gives a concise, but systematic and self-contained, exposition of the essentials of Markov processes, together with recent achievements, working from the "physical picture" - a formal pre-generator, and stressing the interplay between probabilistic (stochastic differential equations) and analytic (semigroups) tools. The book will be useful to students and researchers. Part I can be used for a one-semester course on Brownian motion, Lévy and Markov processes, or on probabilistic methods for PDE. Part II mainly contains the author's research on Markov processes. From the contents: Tools from Probability and Analysis Brownian motion Markov processes and martingales SDE, ψDE and martingale problems Processes in Euclidean spaces Processes in domains with a boundary Heat kernels for stable-like processes Continuous-time random walks and fractional dynamics Complex chains and Feynman integral


Markov Processes, Semigroups, and Generators

Markov Processes, Semigroups, and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 449

ISBN-13: 3110250101

DOWNLOAD EBOOK

This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for


Structured Dependence between Stochastic Processes

Structured Dependence between Stochastic Processes

Author: Tomasz R. Bielecki

Publisher: Cambridge University Press

Published: 2020-08-27

Total Pages: 280

ISBN-13: 1108895379

DOWNLOAD EBOOK

The relatively young theory of structured dependence between stochastic processes has many real-life applications in areas including finance, insurance, seismology, neuroscience, and genetics. With this monograph, the first to be devoted to the modeling of structured dependence between random processes, the authors not only meet the demand for a solid theoretical account but also develop a stochastic processes counterpart of the classical copula theory that exists for finite-dimensional random variables. Presenting both the technical aspects and the applications of the theory, this is a valuable reference for researchers and practitioners in the field, as well as for graduate students in pure and applied mathematics programs. Numerous theoretical examples are included, alongside examples of both current and potential applications, aimed at helping those who need to model structured dependence between dynamic random phenomena.


Semigroups, Boundary Value Problems and Markov Processes

Semigroups, Boundary Value Problems and Markov Processes

Author: Kazuaki Taira

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 343

ISBN-13: 3662098571

DOWNLOAD EBOOK

This volume will be of great appeal to both advanced students and researchers. For the former, it serves as an effective introduction to three interrelated subjects of analysis: semigroups, Markov processes and elliptic boundary value problems. For the latter, it provides a new method for the analysis of Markov processes, a powerful method clearly capable of extensive further development.


Stochastic Processes and Applications

Stochastic Processes and Applications

Author: Grigorios A. Pavliotis

Publisher: Springer

Published: 2014-11-19

Total Pages: 345

ISBN-13: 1493913239

DOWNLOAD EBOOK

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.


Pseudo Differential Operators & Markov Processes

Pseudo Differential Operators & Markov Processes

Author: Niels Jacob

Publisher: Imperial College Press

Published: 2005

Total Pages: 504

ISBN-13: 1860947158

DOWNLOAD EBOOK

This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory.


Pseudo Differential Operators & Markov Processes: Markov processes and applications

Pseudo Differential Operators & Markov Processes: Markov processes and applications

Author: Niels Jacob

Publisher: Imperial College Press

Published: 2001

Total Pages: 506

ISBN-13: 1860945686

DOWNLOAD EBOOK

This work covers two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated.


Pseudo Differential Operators And Markov Processes, Volume Iii: Markov Processes And Applications

Pseudo Differential Operators And Markov Processes, Volume Iii: Markov Processes And Applications

Author: Niels Jacob

Publisher: World Scientific

Published: 2005-06-14

Total Pages: 504

ISBN-13: 1783260246

DOWNLOAD EBOOK

This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory./a