Markov Processes

Markov Processes

Author: Daniel T. Gillespie

Publisher: Gulf Professional Publishing

Published: 1992

Total Pages: 600

ISBN-13: 9780122839559

DOWNLOAD EBOOK

Markov process theory provides a mathematical framework for analyzing the elements of randomness that are involved in most real-world dynamical processes. This introductory text, which requires an understanding of ordinary calculus, develops the concepts and results of random variable theory.


Markov Processes, Gaussian Processes, and Local Times

Markov Processes, Gaussian Processes, and Local Times

Author: Michael B. Marcus

Publisher: Cambridge University Press

Published: 2006-07-24

Total Pages: 4

ISBN-13: 1139458833

DOWNLOAD EBOOK

This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.


Markov Chains

Markov Chains

Author: Pierre Bremaud

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 456

ISBN-13: 1475731248

DOWNLOAD EBOOK

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.


Markov Processes, Semigroups, and Generators

Markov Processes, Semigroups, and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 449

ISBN-13: 3110250101

DOWNLOAD EBOOK

This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for


Markov Processes for Stochastic Modeling

Markov Processes for Stochastic Modeling

Author: Oliver Ibe

Publisher: Newnes

Published: 2013-05-22

Total Pages: 515

ISBN-13: 0124078397

DOWNLOAD EBOOK

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.


Fluctuations in Markov Processes

Fluctuations in Markov Processes

Author: Tomasz Komorowski

Publisher: Springer Science & Business Media

Published: 2012-07-05

Total Pages: 494

ISBN-13: 364229880X

DOWNLOAD EBOOK

The present volume contains the most advanced theories on the martingale approach to central limit theorems. Using the time symmetry properties of the Markov processes, the book develops the techniques that allow us to deal with infinite dimensional models that appear in statistical mechanics and engineering (interacting particle systems, homogenization in random environments, and diffusion in turbulent flows, to mention just a few applications). The first part contains a detailed exposition of the method, and can be used as a text for graduate courses. The second concerns application to exclusion processes, in which the duality methods are fully exploited. The third part is about the homogenization of diffusions in random fields, including passive tracers in turbulent flows (including the superdiffusive behavior). There are no other books in the mathematical literature that deal with this kind of approach to the problem of the central limit theorem. Hence, this volume meets the demand for a monograph on this powerful approach, now widely used in many areas of probability and mathematical physics. The book also covers the connections with and application to hydrodynamic limits and homogenization theory, so besides probability researchers it will also be of interest also to mathematical physicists and analysts.


Markov Processes

Markov Processes

Author: James R. Kirkwood

Publisher: CRC Press

Published: 2015-02-09

Total Pages: 336

ISBN-13: 1482240742

DOWNLOAD EBOOK

Clear, rigorous, and intuitive, Markov Processes provides a bridge from an undergraduate probability course to a course in stochastic processes and also as a reference for those that want to see detailed proofs of the theorems of Markov processes. It contains copious computational examples that motivate and illustrate the theorems. The text is desi


Image Analysis, Random Fields and Dynamic Monte Carlo Methods

Image Analysis, Random Fields and Dynamic Monte Carlo Methods

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 321

ISBN-13: 3642975224

DOWNLOAD EBOOK

This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a paper from 1984. It formally adopts the Bayesian paradigm and therefore is referred to as 'Bayesian Image Analysis'. There has been considerable and still growing interest in prior models and, in particular, in discrete Markov random field methods. Whereas image analysis is replete with ad hoc techniques, Bayesian image analysis provides a general framework encompassing various problems from imaging. Among those are such 'classical' applications like restoration, edge detection, texture discrimination, motion analysis and tomographic reconstruction. The subject is rapidly developing and in the near future is likely to deal with high-level applications like object recognition. Fascinating experiments by Y. CHOW, U. GRENANDER and D.M. KEENAN (1987), (1990) strongly support this belief.