Markov Chain Monte Carlo

Markov Chain Monte Carlo

Author: Dani Gamerman

Publisher: CRC Press

Published: 1997-10-01

Total Pages: 264

ISBN-13: 9780412818202

DOWNLOAD EBOOK

Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.


Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice

Author: W.R. Gilks

Publisher: CRC Press

Published: 1995-12-01

Total Pages: 505

ISBN-13: 1482214970

DOWNLOAD EBOOK

In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,


Handbook of Markov Chain Monte Carlo

Handbook of Markov Chain Monte Carlo

Author: Steve Brooks

Publisher: CRC Press

Published: 2011-05-10

Total Pages: 620

ISBN-13: 1420079425

DOWNLOAD EBOOK

Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisherie


Advanced Markov Chain Monte Carlo Methods

Advanced Markov Chain Monte Carlo Methods

Author: Faming Liang

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 308

ISBN-13: 1119956803

DOWNLOAD EBOOK

Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.


Markov Chain Monte Carlo Simulations and Their Statistical Analysis

Markov Chain Monte Carlo Simulations and Their Statistical Analysis

Author: Bernd A. Berg

Publisher: World Scientific

Published: 2004

Total Pages: 380

ISBN-13: 9812389350

DOWNLOAD EBOOK

This book teaches modern Markov chain Monte Carlo (MC) simulation techniques step by step. The material should be accessible to advanced undergraduate students and is suitable for a course. It ranges from elementary statistics concepts (the theory behind MC simulations), through conventional Metropolis and heat bath algorithms, autocorrelations and the analysis of the performance of MC algorithms, to advanced topics including the multicanonical approach, cluster algorithms and parallel computing. Therefore, it is also of interest to researchers in the field. The book relates the theory directly to Web-based computer code. This allows readers to get quickly started with their own simulations and to verify many numerical examples easily. The present code is in Fortran 77, for which compilers are freely available. The principles taught are important for users of other programming languages, like C or C++.


Markov Chains

Markov Chains

Author: Pierre Bremaud

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 456

ISBN-13: 1475731248

DOWNLOAD EBOOK

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.


Markov Chain Monte Carlo Methods in Quantum Field Theories

Markov Chain Monte Carlo Methods in Quantum Field Theories

Author: Anosh Joseph

Publisher: Springer Nature

Published: 2020-04-16

Total Pages: 134

ISBN-13: 3030460444

DOWNLOAD EBOOK

This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.


Markov Chain Monte Carlo

Markov Chain Monte Carlo

Author: W. S. Kendall

Publisher: World Scientific

Published: 2005

Total Pages: 239

ISBN-13: 9812564276

DOWNLOAD EBOOK

Markov Chain Monte Carlo (MCMC) originated in statistical physics, but has spilled over into various application areas, leading to a corresponding variety of techniques and methods. That variety stimulates new ideas and developments from many different places, and there is much to be gained from cross-fertilization. This book presents five expository essays by leaders in the field, drawing from perspectives in physics, statistics and genetics, and showing how different aspects of MCMC come to the fore in different contexts. The essays derive from tutorial lectures at an interdisciplinary program at the Institute for Mathematical Sciences, Singapore, which exploited the exciting ways in which MCMC spreads across different disciplines.


Markov Chain Monte Carlo

Markov Chain Monte Carlo

Author: Dani Gamerman

Publisher: CRC Press

Published: 2006-05-10

Total Pages: 342

ISBN-13: 148229642X

DOWNLOAD EBOOK

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simul


Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R

Author: Christian Robert

Publisher: Springer Science & Business Media

Published: 2010

Total Pages: 297

ISBN-13: 1441915753

DOWNLOAD EBOOK

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.