The early development of the screw propeller. Propeller geometry. The propeller environment. The ship wake field, propeller performance characteristics.
This book discusses most types of ship propulsors, including oscillating foils and wind-assisted propulsion devices. It includes a general discussion of ship resistance and the prediction of powering performance from model tests, primarily for conventional screw propellers (including operating in ice). A resource for non-conventional marine propulsors, based on extensive research carried out by the author.
The propulsion system behaviour is a key aspect for the overall dynamics of a ship. However, despite its great importance, numerical methodologies for detailed investigations on marine propulsion dynamics are not yet widely covered in scientific literature. This book presents the main steps for the development of a multi-physic simulation platform, able to represent the motions of a twin screw ship in six degrees of freedom, taking into account the whole propulsion system and automation effects. A number of mathematical sub-models had been developed and calibrated by a set of experimental tests, in model and full scale. Finally, the sea trials campaign of a ship is used to validate and tune the developed simulator. The proposed simulation methodology can be used in the ship preliminary design phase, in order to plan and test the propulsion system and automation. Further applications can include the design optimization and crew training.
Although the propeller lies submerged out of sight, it is a complex component in both the hydrodynamic and structural sense. This book fulfils the need for a comprehensive and cutting edge volume that brings together a great range of knowledge on propulsion technology, a multi-disciplinary and international subject. The book comprises three main sections covering hydrodynamics; materials and mechanical considerations; and design, operation and performance. The discussion relates theory to practical problems of design, analysis and operational economy, and is supported by extensive design information, operational detail and tabulated data. Fully updated and revised to cover the latest advances in the field, the new edition now also includes four new chapters on azimuthing and podded propulsors, propeller-rudder interaction, high-speed propellers, and propeller-ice interaction.·The most complete book available on marine propellers, fully updated and revised, with four new chapters on azimuthing and podded propulsors, propeller-rudder interaction, high-speed propellers, and propeller-ice interaction·A valuable reference for marine engineers and naval architects gathering together the subject of propulsion technology, in both theory and practice, over the last forty years ·Written by a leading expert on propeller technology, essential for students of propulsion and hydrodynamics, complete with online worked examples
Based on the author’s research and practical projects, he presents a broad view of the needs and problems of the shipping industry in this area. The book covers several models and control types, developing an integrated nonlinear state-space model of the marine propulsion system.
This book takes an operational approach to the turbine relative to its function as part of an overall power plant. It focuses on principles, essential applications, and performance rather than construction, hardware, and design variation. It provides new sections on fuels, combustion, gas properties, and turbines in the gas engine.
Shipboard Propulsion, Power Electronics, and Ocean Energy fills the need for a comprehensive book that covers modern shipboard propulsion and the power electronics and ocean energy technologies that drive it. With a breadth and depth not found in other books, it examines the power electronics systems for ship propulsion and for extracting ocean energy, which are mirror images of each other. Comprised of sixteen chapters, the book is divided into four parts: Power Electronics and Motor Drives explains basic power electronics converters and variable-frequency drives, cooling methods, and quality of power Electric Propulsion Technologies focuses on the electric propulsion of ships using recently developed permanent magnet and superconducting motors, as well as hybrid propulsion using fuel cell, photovoltaic, and wind power Renewable Ocean Energy Technologies explores renewable ocean energy from waves, marine currents, and offshore wind farms System Integration Aspects discusses two aspects—energy storage and system reliability—that are essential for any large-scale power system This timely book evolved from the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching at the U.S. Merchant Marine Academy. As a textbook, it is ideal for an elective course at marine and naval academies with engineering programs. It is also a valuable reference for commercial and military shipbuilders, port operators, renewable ocean energy developers, classification societies, machinery and equipment manufacturers, researchers, and others interested in modern shipboard power and propulsion systems. The information provided herein does not necessarily represent the view of the U.S. Merchant Marine Academy or the U.S. Department of Transportation. This book is a companion to Shipboard Electrical Power Systems (CRC Press, 2011), by the same author.
This second edition provides a comprehensive and scientific approach to evaluating ship resistance and propulsion. Written by experts in the field, it includes the latest developments in CFD, experimental techniques and guidance for the practical estimation of ship propulsive power. It addresses improvements in energy efficiency and reduced emissions, and the introduction of the Energy Efficiency Design Index (EEDI). Descriptions have now been included of pump jets, rim driven propulsors, shape adaptive foils, propeller noise and dynamic positioning. Trial procedures have been updated, and preliminary estimates of power for hydrofoil craft, submarines and AUVs are incorporated. Standard series data for hull resistance and propeller performance are included, enabling practitioners to make ship power predictions based on material and data within the book. Numerous fully worked examples illustrate applications for most ship and small craft types, making this book ideal for practising engineers, naval architects, marine engineers and undergraduate and postgraduate students.