Structured like a textbook, the second edition of this reference covers all aspects of biopharmaceutical manufacturing, including legal and regulatory issues, production facility design, and quality assurance, with a focus on supply chain management and regulations in emerging markets and cost control. The author has longstanding industrial expertise in biopharmaceutical production and years of experience teaching at universities. As such, this practical book is ideal for use in academia as well as for internal training within companies.
In this era of biotechnology there have been many books covering the fundamentals of recombinant DNA technology and protein chemistry. However, not many sources are available for the pharmaceutical develop ment scientist and other personnel responsible for the commercialization of the finished dosage forms of these new biopharmaceuticals and other products from biotechnology. This text will help to fill this gap. Once active biopharmaceutical molecules are candidates for clinical trial investigation and subsequent commercialization, a number of other activities must take place while research and development on these molecules continues. The active ingredient itself must be formulated into a finished dosage form that can be conveniently used by health care professionals and patients. Properties of the biopharmaceutical molecule must be clearly understood so that the appropriate finished product formulation can be developed. Finished product formulation development includes not only the chemical formulation, but also the packaging system, the manufacturing process, and appropriate control strategies to assure such good manufacturing practice attributes as safety, identity, strength, purity, and quality.
This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.
Sets forth the state of the science and technology in plasma protein production With contributions from an international team of eighty leading experts and pioneers in the field, Production of Plasma Proteins for Therapeutic Use presents a comprehensive overview of the current state of knowledge about the function, use, and production of blood plasma proteins. In addition to details of the operational requirements for the production of plasma derivatives, the book describes the biology, development, research, manufacture, and clinical indications of essentially all plasma proteins with established clinical use or therapeutic potential. Production of Plasma Proteins for Therapeutic Use covers the key aspects of the plasma fractionation industry in five sections: Section 1: Introduction to Plasma Fractionation initially describes the history of transfusion and then covers the emergence of plasma collection and fractionation from its earliest days to the present time, with the commercial and not-for-profit sectors developing into a multi-billion dollar industry. Section 2: Plasma Proteins for Therapeutic Use contains 24 chapters dedicated to specific plasma proteins, including coagulation factors, albumin, immunoglobulin, and a comprehensive range of other plasma-derived proteins with therapeutic indications. Each chapter discusses the physiology, biochemistry, mechanism of action, and manufacture of each plasma protein including viral safety issues and clinical uses. Section 3: Pathogen Safety of Plasma Products examines issues and procedures for enhancing viral safety and reducing the risk of transmissible spongiform encephalopathy transmission. Section 4: The Pharmaceutical Environment Applied to Plasma Fractionation details the requirements and activities associated with plasma collection, quality assurance, compliance with regulatory requirements, provision of medical affairs support, and the manufacture of plasma products. Section 5: The Market for Plasma Products and the Economics of Fractionation reviews the commercial environment and economics of the plasma fractionation industry including future trends, highlighting regions such as Asia, which have the potential to exert a major influence on the plasma fractionation industry in the twenty-first century.
A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.
On July 30-31, 2018, the National Academies of Sciences, Engineering, and Medicine held a workshop titled Continuous Manufacturing for the Modernization of Pharmaceutical Production. This workshop discussed the business and regulatory concerns associated with adopting continuous manufacturing techniques to produce biologics such as enzymes, monoclonal antibodies, and vaccines. The participants also discussed specific challenges for integration across the manufacturing system, including upstream and downstream processes, analytical techniques, and drug product development. The workshop addressed these challenges broadly across the biologics domain but focused particularly on drug categories of greatest FDA and industrial interest such as monoclonal antibodies and vaccines. This publication summarizes the presentations and discussions from the workshop.
Pharmaceutical Biotechnology offers students taking Pharmacy and related Medical and Pharmaceutical courses a comprehensive introduction to the fast-moving area of biopharmaceuticals. With a particular focus on the subject taken from a pharmaceutical perspective, initial chapters offer a broad introduction to protein science and recombinant DNA technology- key areas that underpin the whole subject. Subsequent chapters focus upon the development, production and analysis of these substances. Finally the book moves on to explore the science, biotechnology and medical applications of specific biotech products categories. These include not only protein-based substances but also nucleic acid and cell-based products. introduces essential principles underlining modern biotechnology- recombinant DNA technology and protein science an invaluable introduction to this fast-moving subject aimed specifically at pharmacy and medical students includes specific ‘product category chapters’ focusing on the pharmaceutical, medical and therapeutic properties of numerous biopharmaceutical products. entire chapter devoted to the principles of genetic engineering and how these drugs are developed. includes numerous relevant case studies to enhance student understanding no prior knowledge of protein structure is assumed
This book gives pharmaceutical scientists an up-to-date resource on protein aggregation and its consequences, and available methods to control or slow down the aggregation process. While significant progress has been made in the past decade, the current understanding of protein aggregation and its consequences is still immature. Prevention or even moderate inhibition of protein aggregation has been mostly experimental. The knowledge in this book can greatly help pharmaceutical scientists in the development of therapeutic proteins, and also instigate further scientific investigations in this area. This book fills such a need by providing an overview on the causes, consequences, characterization, and control of the aggregation of therapeutic proteins.
This second edition of a very successful book is thoroughly updated with existing chapters completely rewritten while the content has more than doubled from 16 to 36 chapters. As with the first edition, the focus is on industrial pharmaceutical research, written by a team of industry experts from around the world, while quality and safety management, drug approval and regulation, patenting issues, and biotechnology fundamentals are also covered. In addition, this new edition now not only includes biotech drug development but also the use of biopharmaceuticals in diagnostics and vaccinations. With a foreword by Robert Langer, Kenneth J Germeshausen Professor of Chemical and Biomedical Engineering at MIT and member of the National Academy of Engineering and the National Academy of Sciences.
Emphasizing the newest developments in the field, this volume presents detailed methodswith added emphasison therapeutic protein discovery. It features key tips and valuable implementation advice to ensure successful results."