Manifolds II

Manifolds II

Author: Paul Bracken

Publisher: BoD – Books on Demand

Published: 2019-05-22

Total Pages: 148

ISBN-13: 1838803092

DOWNLOAD EBOOK

Differential geometry is a very active field of research and has many applications to areas such as physics, in particular gravity. The chapters in this book cover a number of subjects that will be of interest to workers in these areas. It is hoped that these chapters will be able to provide a useful resource for researchers with regard to current fields of research in this important area.


Several Complex Variables and Complex Manifolds

Several Complex Variables and Complex Manifolds

Author: Mike Field

Publisher: Cambridge University Press

Published: 1982

Total Pages: 224

ISBN-13: 9780521288880

DOWNLOAD EBOOK

Annotation This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.


An Introduction to Manifolds

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

Published: 2010-10-05

Total Pages: 426

ISBN-13: 1441974008

DOWNLOAD EBOOK

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


Introduction to Topological Manifolds

Introduction to Topological Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 395

ISBN-13: 038722727X

DOWNLOAD EBOOK

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.


Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition

Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition

Author: Y. Choquet-Bruhat

Publisher: Elsevier

Published: 2000-11-08

Total Pages: 559

ISBN-13: 0080527159

DOWNLOAD EBOOK

Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.


Lectures On The Geometry Of Manifolds (2nd Edition)

Lectures On The Geometry Of Manifolds (2nd Edition)

Author: Liviu I Nicolaescu

Publisher: World Scientific

Published: 2007-09-27

Total Pages: 606

ISBN-13: 9814474770

DOWNLOAD EBOOK

The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that “in learning the sciences examples are of more use than precepts”. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a “global and analytical bias”. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.


Introduction to Smooth Manifolds

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 646

ISBN-13: 0387217525

DOWNLOAD EBOOK

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why


Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 761

ISBN-13: 1475740131

DOWNLOAD EBOOK

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.


Symplectic Geometry of Integrable Hamiltonian Systems

Symplectic Geometry of Integrable Hamiltonian Systems

Author: Michèle Audin

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 225

ISBN-13: 3034880715

DOWNLOAD EBOOK

Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. This book serves as an introduction to symplectic and contact geometry for graduate students, exploring the underlying geometry of integrable Hamiltonian systems. Includes exercises designed to complement the expositiont, and up-to-date references.


In the Tradition of Thurston II

In the Tradition of Thurston II

Author: Ken’ichi Ohshika

Publisher: Springer Nature

Published: 2022-08-02

Total Pages: 525

ISBN-13: 3030975606

DOWNLOAD EBOOK

The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston’s heritage. Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.