This book provides a new point of view on the subject of the management of uncertainty. It covers a wide variety of both theoretical and practical issues involving the analysis and management of uncertainty in the fields of finance, management and marketing. Audience: Researchers and professionals from operations research, management science and economics.
A comprehensive framework for assessing strategies for managing risk and uncertainty, integrating theory and practice and synthesizing insights from many fields. This book offers a framework for making decisions under risk and uncertainty. Synthesizing research from economics, finance, decision theory, management, and other fields, the book provides a set of tools and a way of thinking that determines the relative merits of different strategies. It takes as its premise that we make better decisions if we use the whole toolkit of economics and related fields to inform our decision making. The text explores the distinction between risk and uncertainty and covers standard models of decision making under risk as well as more recent work on decision making under uncertainty, with a particular focus on strategic interaction. It also examines the implications of incomplete markets for managing under uncertainty. It presents four core strategies: a benchmark strategy (proceeding as if risk and uncertainty were low), a financial hedging strategy (valuable if there is much risk), an operational hedging strategy (valuable for conditions of much uncertainty), and a flexible strategy (valuable if there is much risk and/or uncertainty). The book then examines various aspects of these strategies in greater depth, building on empirical work in several different fields. Topics include price-setting, real options and Monte Carlo techniques, organizational structure, and behavioral biases. Many chapters include exercises and appendixes with additional material. The book can be used in graduate or advanced undergraduate courses in risk management, as a guide for researchers, or as a reference for management practitioners.
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.
Real-life decisions are usually made in the state of uncertainty such as randomness and fuzziness. How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, project scheduling problem, vehicle routing problem, facility location problem, and machine scheduling problem. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. Authored by a leading European network of experts representing a cross section of industries, Uncertainty in Industrial Practice aims to provide a reference for the dissemination of uncertainty treatment in any type of industry. It is concerned with the quantification of uncertainties in the presence of data, model(s) and knowledge about the system, and offers a technical contribution to decision-making processes whilst acknowledging industrial constraints. The approach presented can be applied to a range of different business contexts, from research or early design through to certification or in-service processes. The authors aim to foster optimal trade-offs between literature-referenced methodologies and the simplified approaches often inevitable in practice, owing to data, time or budget limitations of technical decision-makers. Uncertainty in Industrial Practice: Features recent uncertainty case studies carried out in the nuclear, air & space, oil, mechanical and civil engineering industries set in a common methodological framework. Presents methods for organizing and treating uncertainties in a generic and prioritized perspective. Illustrates practical difficulties and solutions encountered according to the level of complexity, information available and regulatory and financial constraints. Discusses best practice in uncertainty modeling, propagation and sensitivity analysis through a variety of statistical and numerical methods. Reviews recent standards, references and available software, providing an essential resource for engineers and risk analysts in a wide variety of industries. This book provides a guide to dealing with quantitative uncertainty in engineering and modelling and is aimed at practitioners, including risk-industry regulators and academics wishing to develop industry-realistic methodologies.
This volume integrates scholarly work on disclosure and uncertainty with the most up-to-date, cutting edge research, theories, and applications. Uncertainty is an ever-present part of human relationships, and the ways in which people reduce and/or manage uncertainty involves regulating their communication with others through revealing and concealing information. This collection is devoted to collating knowledge in these areas, advancing theory and presenting work that is socially meaningful. This work includes contributions from renowned scholars in interpersonal uncertainty and information regulation, focusing on processes that bridge boundaries within and across disciplines, while maintaining emphasis on interpersonal contexts. Disciplines represented here include interpersonal, family, and health communication, as well as relational and social psychology. Key features of the volume include: comprehensive coverage integrating the latest research on disclosure, information seeking, and uncertainty a highly theoretical content, socially meaningful in nature (applied to real-world contexts) an interdisciplinary approach that crosses sub-fields within communication. This volume is a unique and timely resource for advanced study in interpersonal, health, or family communication. With its emphasis on theory, the book is an excellent resource for graduate courses addressing theory and/or theory construction, and it will also appeal to scholars interested in applied research.
This book provides a new point of view on the subject of the management of uncertainty. It covers a wide variety of both theoretical and practical issues involving the analysis and management of uncertainty in the fields of finance, management and marketing. Audience: Researchers and professionals from operations research, management science and economics.
Risk and uncertainty may sound scary, but todays best business leaders are navigating both to gain strategic advantage over competitorsand you can, too. This guide for business leaders examines risk and opportunity through the lens of some of the worlds most respected visionaries, including Howard Schultz, Andy Grove, Peter Huntsman, John Krafcik, Peter Leibinger, Doug Hepper, and many more. These visionaries looked beyond financial performance to see opportunitiesand they did so by understanding uncertainty. Then, they decisively acted to create measurable results that coincided with the future they envisioned. Find out how they did it, and learn how to: identify, define, and convert uncertainty into value; become more opportunistic when facing uncertainty; develop the skill to spot where advantages are likely to emerge; and create an environment where managers and leaders complement each other. Filled with case studies on companies such as Hyundai, Starbucks, Roche, and Intel, this guide delivers proven ways to create value and leverage uncertainty. It is the culmination of a decade of research and interaction with dozens of companies and growth leaders who prove that pursuing a market driven strategy to navigating uncertainty will gain measurable market advantage.
Emphasising that firms face uncertainties and unknowns, this book argues that the core of strategic thinking and processes rests on the organization and its leaders developing newly imagined solutions to the opportunities that these uncertainties open up. It presents new approaches for managers, consultants, strategy teachers and students.
A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.