Weather and climate risk is a very broad and complex subject. One of our biggest challenges is to recognise the complexity of climate science and at the same time, implement practical ways of adapting and managing the impact of weather and climate on a farm business. This book explains daily and seasonal weather events; discusses the drivers of weather and climate and the longer term scientific models that measure and monitor our variable climate; and describes how to manage the risks that weather and climate present to your farm business. How to use this information to guide on-farm decision-making is the point of this book. It covers three key principles: 1. All farming systems involve change and adaption. 2. Variability in weather or climate brings unpredictability, uncertainty, and even disasters. These introduce risk into our farming systems. 3. Managing this risk is a planning process. There are tools and techniques that can keep risk in perspective, as a motivator rather than a stressor. Managing climate risk on your farm is based on the work of two previous publications from Tocal College; Weather and climate in farming, managing risks for profit (2000) Bayley, D and NBN Weather Book (2006) Bayley, D and Brouwer, D. Also used extensively in this book, A Farmer’s Guide to Managing Climate Risk, 8th edition 2008 by Michael Cashen, Advisory Officer Climatology. Recognition is given to the authors above for their important and significant contribution to this publication.
Climate change presents an unprecedented challenge to the productivity and profitability of agriculture in North America. More variable weather, drought, and flooding create the most obvious damage, but hot summer nights, warmer winters, longer growing seasons, and other environmental changes have more subtle but far-reaching effects on plant and livestock growth and development. Resilient Agriculture recognizes the critical role that sustainable agriculture will play in the coming decades and beyond. The latest science on climate risk, resilience, and climate change adaptation is blended with the personal experience of farmers and ranchers to explore: The "strange changes" in weather recorded over the last decade The associated shifts in crop and livestock behavior The actions producers have taken to maintain productivity in a changing climate The climate change challenge is real and it is here now. To enjoy the sustained production of food, fiber, and fuel well into the twenty-first century, we must begin now to make changes that will enhance the adaptive capacity and resilience of North American agriculture. The rich knowledge base presented in Resilient Agriculture is poised to serve as the cornerstone of an evolving, climate-ready food system. Laura Lengnick is a researcher, policymaker, activist, educator, and farmer whose work explores the community-enhancing potential of agriculture and food systems. She directs the academic program in sustainable agriculture at Warren Wilson College and was a lead author of the report Climate Change and Agriculture in the United States: Effects and Adaptation.
This publication serves as a roadmap for exploring and managing climate risk in the U.S. financial system. It is the first major climate publication by a U.S. financial regulator. The central message is that U.S. financial regulators must recognize that climate change poses serious emerging risks to the U.S. financial system, and they should move urgently and decisively to measure, understand, and address these risks. Achieving this goal calls for strengthening regulators’ capabilities, expertise, and data and tools to better monitor, analyze, and quantify climate risks. It calls for working closely with the private sector to ensure that financial institutions and market participants do the same. And it calls for policy and regulatory choices that are flexible, open-ended, and adaptable to new information about climate change and its risks, based on close and iterative dialogue with the private sector. At the same time, the financial community should not simply be reactive—it should provide solutions. Regulators should recognize that the financial system can itself be a catalyst for investments that accelerate economic resilience and the transition to a net-zero emissions economy. Financial innovations, in the form of new financial products, services, and technologies, can help the U.S. economy better manage climate risk and help channel more capital into technologies essential for the transition. https://doi.org/10.5281/zenodo.5247742
This open access book examines the interactions between India’s economic development, agricultural production, and nutrition through the lens of a “Food Systems Approach (FSA).” The Indian growth story is a paradoxical one. Despite economic progress over the past two decades, regional inequality, food insecurity and malnutrition problems persist. Simultaneously, recent trends in obesity along with micro-nutrient deficiency portend to a future public health crisis. This book explores various challenges and opportunities to achieve a nutrition-secure future through diversified production systems, improved health and hygiene environment and greater individual capability to access a balanced diet contributing to an increase in overall productivity. The authors bring together the latest data and scientific evidence from the country to map out the current state of food systems and nutrition outcomes. They place India within the context of other developing country experiences and highlight India’s status as an outlier in terms of the persistence of high levels of stunting while following global trends in obesity. This book discusses the policy and institutional interventions needed for promoting a nutrition-sensitive food system and the multi-sectoral strategies needed for simultaneously addressing the triple burden of malnutrition in India.
Based on an International Workshop held in New Delhi, India, this work should be of interest to all organizations and agencies interested in improved risk management in agriculture. In many parts of the world, weather and climate are one of the biggest production risks and uncertainty factors impacting on agricultural systems performance and management. Both structural and non-structural measures can be used to reduce the impacts of the variability (including extremes) of climate resources on crop production.
A practical, bipartisan call to action from the world’s leading thinkers on the environment and sustainability Sustainability has emerged as a global priority over the past several years. The 2015 Paris Agreement on climate change and the adoption of the seventeen Sustainable Development Goals through the United Nations have highlighted the need to address critical challenges such as the buildup of greenhouse gases in the atmosphere, water shortages, and air pollution. But in the United States, partisan divides, regional disputes, and deep disagreements over core principles have made it nearly impossible to chart a course toward a sustainable future. This timely new book, edited by celebrated scholar Daniel C. Esty, offers fresh thinking and forward-looking solutions from environmental thought leaders across the political spectrum. The book’s forty essays cover such subjects as ecology, environmental justice, Big Data, public health, and climate change, all with an emphasis on sustainability. The book focuses on moving toward sustainability through actionable, bipartisan approaches based on rigorous analytical research.
This book reviews the state of agricultural climate change mitigation globally, with a focus on identifying the feasibility, opportunities and challenges for achieving mitigation among smallholder farmers. The purpose is ultimately to accelerate efforts towards mitigating land-based climate change. While much attention has been focused on forestry for its reputed cost-effectiveness, the agricultural sector contributes about ten to twelve per cent of emissions and has a large technical and economic potential for reducing greenhouse gases. The book does not dwell on the science of emissions reduction, as this is well covered elsewhere; rather, it focuses on the design and practical implementation of mitigation activities through changing farming systems. Climate Change Mitigation and Agriculture includes chapters about experiences in developed countries, such as Canada and Australia, where these efforts also have lessons for mitigation options for smallholders in poorer nations, as well as industrialising countries such as Brazil and China. A wide range of agroecological zones and of aspects or types of farming, including livestock, crops, fish farming, fertilizer use and agroforestry, as well as economics and finance, is included. The volume presents a synthesis of current knowledge and research activities on this emerging subject. Together the chapters capture an exciting period in the development of land-based climate change mitigation as attention is increasingly focused on agriculture's role in contributing to climate change.
Climate change poses many challenges that affect society and the natural world. With these challenges, however, come opportunities to respond. By taking steps to adapt to and mitigate climate change, the risks to society and the impacts of continued climate change can be lessened. The National Climate Assessment, coordinated by the U.S. Global Change Research Program, is a mandated report intended to inform response decisions. Required to be developed every four years, these reports provide the most comprehensive and up-to-date evaluation of climate change impacts available for the United States, making them a unique and important climate change document. The draft Fourth National Climate Assessment (NCA4) report reviewed here addresses a wide range of topics of high importance to the United States and society more broadly, extending from human health and community well-being, to the built environment, to businesses and economies, to ecosystems and natural resources. This report evaluates the draft NCA4 to determine if it meets the requirements of the federal mandate, whether it provides accurate information grounded in the scientific literature, and whether it effectively communicates climate science, impacts, and responses for general audiences including the public, decision makers, and other stakeholders.
With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution "This book is the toolkit for making the soil itself a sponge for carbon. It’s a powerful vision."—Bill McKibben "The Carbon Farming Solution is a book we will look back upon decades from now and wonder why something so critically relevant could have been so overlooked until that time. . . . [It] describes the foundation of the future of civilization."—Paul Hawken In this groundbreaking book, Eric Toensmeier argues that agriculture—specifically, the subset of practices known as "carbon farming"—can, and should be, a linchpin of a global climate solutions platform. Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in above-ground biomass. Combined with a massive reduction in fossil fuel emissions—and in concert with adaptation strategies to our changing environment— carbon farming has the potential to bring us back from the brink of disaster and return our atmosphere to the "magic number" of 350 parts per million of carbon dioxide. Toensmeier’s book is the first to bring together these powerful strategies in one place. Includes in-depth analysis of the available research. Carbon farming can take many forms. The simplest practices involve modifications to annual crop production. Although many of these modifications have relatively low sequestration potential, they are widely applicable and easily adopted, and thus have excellent potential to mitigate climate change if practiced on a global scale. Likewise, grazing systems such as silvopasture are easily replicable, don’t require significant changes to human diet, and—given the amount of agricultural land worldwide that is devoted to pasture—can be important strategies in the carbon farming arsenal. But by far, agroforestry practices and perennial crops present the best opportunities for sequestration. While many of these systems are challenging to establish and manage, and would require us to change our diets to new and largely unfamiliar perennial crops, they also offer huge potential that has been almost entirely ignored by climate crusaders. Many of these carbon farming practices are already implemented globally on a scale of millions of hectares. These are not minor or marginal efforts, but win-win solutions that provide food, fodder, and feedstocks while fostering community self-reliance, creating jobs, protecting biodiversity, and repairing degraded land—all while sequestering carbon, reducing emissions, and ultimately contributing to a climate that will remain amenable to human civilization. Just as importantly to a livable future, these crops and practices can contribute to broader social goals such as women’s empowerment, food sovereignty, and climate justice. The Carbon Farming Solution is—at its root—a toolkit and the most complete collection of climate-friendly crops and practices currently available. With this toolkit, farmers, communities, and governments large and small, can successfully launch carbon farming projects with the most appropriate crops and practices to their climate, locale, and socioeconomic needs. Toensmeier’s ultimate goal is to place carbon farming firmly in the center of the climate solutions platform, alongside clean solar and wind energy. With The Carbon Farming Solution, Toensmeier wants to change the discussion, impact policy decisions, and steer mitigation funds to the research, projects, and people around the world who envision a future where agriculture becomes the protagonist in this fraught, urgent, and unprecedented drama of our time. Citizens, farmers, and funders will be inspired to use the tools presented in this important book to transform degraded lands around the world into productive carbon-storing landscapes.
Climate Resilient Agriculture for Ensuring Food Security comprehensively deals with important aspects of climate resilient agriculture for food security using adaptation and mitigation measures. Climatic changes and increasing climatic variability are likely to aggravate the problem of future food security by exerting pressure on agriculture. For the past few decades, the gaseous composition of the earth’s atmosphere has been undergoing significant changes, largely through increased emissions from the energy, industry and agriculture sectors; widespread deforestation as well as fast changes in land use and land management practices. Agriculture and food systems must improve and ensure food security, and to do so they need to adapt to climate change and natural resource pressures, and contribute to mitigating climate change. Climate-resilient agriculture contributes to sustainably increasing agricultural productivity and incomes, adapting and building resilience to climate change and reducing and/or eliminating greenhouse gas emissions where possible. The information on climate resilient agriculture for ensuring food security is widely scattered. There is currently no other book that comprehensively and exclusively deals with the above aspects of agriculture and focuses on ensuring food security. This volume is divided into fourteen chapters, which include the Introduction, Causes of Climate Change, Agriculture as a Source of Greenhouse Gases, Impacts of Climate Change on Agriculture, Regional Impacts on Climate Change, Impacts on Crop Protection, Impacts on Insect and Mite Pests, Impacts on Plant Pathogens, Impacts on Nematode Pests, Impacts on Weeds, Impacts on Integrated Pest Management, Climate Change Adaptation, Climate Change Mitigation, and A Road Map Ahead. The book is extensively illustrated with excellent photographs, which enhance the quality of publication. It is clearly written, using easy-to-understand language. It also provides adoptable recommendations involving eco-friendly adaptation and mitigation measures. This book will be of immense value to the scientific community involved in teaching, research and extension activities. The material can also be used for teaching post-graduate courses. It will also serve as a very useful reference source for policy makers.