Malliavin Calculus for Lévy Processes with Applications to Finance

Malliavin Calculus for Lévy Processes with Applications to Finance

Author: Giulia Di Nunno

Publisher: Springer Science & Business Media

Published: 2008-10-08

Total Pages: 421

ISBN-13: 3540785728

DOWNLOAD EBOOK

This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.


Advanced Financial Modelling

Advanced Financial Modelling

Author: Hansjörg Albrecher

Publisher: Walter de Gruyter

Published: 2009

Total Pages: 465

ISBN-13: 3110213133

DOWNLOAD EBOOK

Annotation This book is a collection of state-of-the-art surveys on various topics in mathematical finance, with an emphasis on recent modelling and computational approaches. The volume is related to a a ~Special Semester on Stochastics with Emphasis on Financea (TM) that took place from September to December 2008 at the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences in Linz, Austria


Differentiable Measures and the Malliavin Calculus

Differentiable Measures and the Malliavin Calculus

Author: Vladimir Igorevich Bogachev

Publisher: American Mathematical Soc.

Published: 2010-07-21

Total Pages: 506

ISBN-13: 082184993X

DOWNLOAD EBOOK

This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.


Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus

Author: David Applebaum

Publisher: Cambridge University Press

Published: 2009-04-30

Total Pages: 461

ISBN-13: 1139477986

DOWNLOAD EBOOK

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.


Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal

Publisher: Springer Nature

Published: 2022-08-06

Total Pages: 634

ISBN-13: 3031038614

DOWNLOAD EBOOK

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.


Malliavin Calculus and Stochastic Analysis

Malliavin Calculus and Stochastic Analysis

Author: Frederi Viens

Publisher: Springer Science & Business Media

Published: 2013-02-15

Total Pages: 580

ISBN-13: 1461459060

DOWNLOAD EBOOK

The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.


Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus

Author: Ioannis Karatzas

Publisher: Springer

Published: 2014-03-27

Total Pages: 490

ISBN-13: 1461209498

DOWNLOAD EBOOK

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.


Stochastic Analysis in Discrete and Continuous Settings

Stochastic Analysis in Discrete and Continuous Settings

Author: Nicolas Privault

Publisher: Springer

Published: 2009-07-14

Total Pages: 322

ISBN-13: 3642023800

DOWNLOAD EBOOK

This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.


Introduction to Malliavin Calculus

Introduction to Malliavin Calculus

Author: David Nualart

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 249

ISBN-13: 1107039126

DOWNLOAD EBOOK

A compact introduction to this active and powerful area of research, combining basic theory, core techniques, and recent applications.