Suspensions of magnetic nanoparticles or ferrofluids can be effectively controlled by magnetic fields, which opens up a fascinating field for basic research into fluid dynamics as well as a host of applications in engineering and medicine. The introductory chapter provides the reader with basic information on the structure, and magnetic and viscous properties of ferrofluids. The bulk of this monograph is based on the author's own research activity and deals with ferrohydrodynamics, especially with the magnetoviscous effects. In particular, the author studies in detail the interparticle interactions so far often neglected but of great importance in concentrated ferrofluids. The basic theory and the most recent experimental findings are presented, making the book interesting reading for physicists or engineers interested in smart materials.
Magnetic control of the properties and the flow of liquids is a challenging field for basic research and for applications. This book is meant to be both an introduction to, and a state-of-the-art review of, this topic. Written in the form of a set of lectures and tutorial reviews, the book addresses the synthesis and characterization of magnetic fluids, their hydrodynamical description and their rheological properties. The book closes with an account of magnetic drug targeting.
ERMR 2006 included invited speakers, technical presentations, poster presentations, and a student paper competition. At the conference banquet, Dr. David Carlson of Lord Corporation addressed the conference attendees and gave a stirring speech on the history of ER and MR fluids, as well as current and future applications. A unique feature of the ERMR Conferences is that they comprehensively cover issues ranging from physics to chemistry to engineering applications of ER and MR materials held in a general session to enhance the interaction between the scientists and engineers. The sessions in ERMR 2006 were organized based into two Symposia: a) Materials and b) Applications. Topics covered in the Materials Symposium included: mechanisms, preparation, and characterization of ER and MR materials. Topics covered in the Applications Symposium included: ER and MR devices, control systems, system integration, and applications. This structure was implemented in order to enable interaction between attending scientists and engineers in both the Materials Symposium and the Applications Symposium, and to enhance the free flow of ideas, and the potential collaborative research opportunities. Sample Chapter(s). Chapter 1: Transient Behavior of Electrorheological Fluids in Shear Flow (471 KB). Contents: The Physical Mechanism to Reduce Viscosity of Liquid Suspensions (R Tao); Polar Molecular Type Electrorheological Fluids (K Lu et al.); Yield Stress in Ferrofluids? (H Shahnazian & S Odenbach); The Effect of Dwell Time on the Rheological Behavior of MR Fluids (M Ahmadian & F D Goncalves); The Methods of Measuring Shear Stress of Polar Molecule Dominated ER Fluids (R Shen et al.); Electrosensitive Lubricants (E V Korobko et al.); Study on Characteristics of an Electrorheological Fluid Coupling (Y Meng et al.); On the Control of a MR Torque Transfer Device (M H Elahinia et al.); Comparison of ERF Clutch Designs (D J Ellam et al.); Examination of Throughflow in a Radial ERF Clutch (S M Chen et al.); Two-Layered Magnetic Fluid Sloshing in a Rectangular Container (S Yoshida et al.); Design of the High-Performance MR Brake and Its Characteristics (T Kikuchi et al.); and other papers. Readership: Mechanical engineers, electrical engineers, physicists, chemists, chemical engineers and materials scientists.
ERMR 2006 included invited speakers, technical presentations, poster presentations, and a student paper competition. At the conference banquet, Dr. David Carlson of Lord Corporation addressed the conference attendees and gave a stirring speech on the history of ER and MR fluids, as well as current and future applications. A unique feature of the ERMR Conferences is that they comprehensively cover issues ranging from physics to chemistry to engineering applications of ER and MR materials held in a general session to enhance the interaction between the scientists and engineers. The sessions in ERMR 2006 were organized based into two Symposia: a) Materials and b) Applications. Topics covered in the Materials Symposium included: mechanisms, preparation, and characterization of ER and MR materials. Topics covered in the Applications Symposium included: ER and MR devices, control systems, system integration, and applications. This structure was implemented in order to enable interaction between attending scientists and engineers in both the Materials Symposium and the Applications Symposium, and to enhance the free flow of ideas, and the potential collaborative research opportunities.
This book provides new techniques for recovering exhaust heat from gas turbines, natural gas combined cycle power plants, biomass boilers, and waste heat recovery from compost and wastewater treatment plants The book provides modeling for the study and comparison of combined cycle power plants with a heat recovery boiler of three pressure levels with reheating, inserting a technological improvement of solar hybridization and partial regeneration in the gas turbine. It assesses the environmental impacts and economic sustainability associated with these improvements. In addition, it proposes emissions minimization, with exhaust gas recirculation (EGR), and emissions treatment with a CO2 capture plant (CCP) and combined cycle power plant. Finally, it provides new insights into heat recovery from compost and exhaust gases recovery from wastewater treatment plants.
Volume 16 of the Handbook on the Properties of Magnetic Materials, as the preceding volumes, has a dual purpose. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 16 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. It provides the readership with novel trends and achievements in magnetism.* composed of topical review articles written by leading authorities.* intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism.* as a work of reference it is intended for scientists active in magnetism research.* provides the readership with novel trends and achievements in magnetism.
Research into the fascinating properties and applications of magnetic fluids - also called ferrofluids - is rapidly growing, making it necessary to provide, at regular intervals, a coherent and tutorial account of the combined theoretical and experimental advances in the field. This volume is an outgrow of seven years of research by some 30 interdisciplinary groups of scientists: theoretical physicists describing the behaviour of such complex fluids, chemical engineers synthesizing nanosize magnetic particles, experimentalist measuring the fluid properties and mechanical engineers exploring the many applications such fluids offer, in turn providing application-guided feedback to the modellers and requests for the preparation of new fluid types to chemists, in particular those providing optimum response to given magnetic field configurations. Moreover, recent developments towards biomedical applications widens this spectrum to include medicine and pharmacology. Consisting of six large chapters on synthesis and characterization, thermo- and electrodynamics, surface instabilities, structure and rheology, biomedical applications as well as engineering and technical applications, this work is both a unique source of reference for anyone working in the field and a suitable introduction for newcomers to the field.
This volume on Ultrafast Magnetism is a collection of articles presented at the international “Ultrafast Magnetization Conference” held at the Congress Center in Strasbourg, France, from October 28th to November 1st, 2013. This first conference, which is intended to be held every two years, received a wonderful attendance and gathered scientists from 27 countries in the field of Femtomagnetism, encompassing many theoretical and experimental research subjects related to the spins dynamics in bulk or nanostructured materials. The participants appreciated this unique opportunity for discussing new ideas and debating on various physical interpretations of the reported phenomena. The format of a single session with many oral contributions as well as extensive time for poster presentations allowed researchers to have a detailed overview of the field. Importantly, one could sense that, in addition to studying fundamental magnetic phenomena, ultrafast magnetism has entered in a phase where applied physics and engineering are playing an important role. Several devices are being proposed with exciting R&D perspectives in the near future, in particular for magnetic recording, time resolved magnetic imaging and spin polarized transport, therefore establishing connections between various aspects of modern magnetism. Simultaneously, the diversity of techniques and experimental configurations has flourished during the past years, employing in particular Xrays, visible, infra-red and terahertz radiations. It was also obvious that an important effort is being made for tracking the dynamics of spins and magnetic domains at the nanometer scale, opening the pathway to exciting future developments. The concerted efforts between theoretical and experimental approaches for explaining the dynamical behaviors of angular momentum and energy levels, on different classes of magnetic materials, are worth pointing out. Finally it was unanimously recognized that the quality of the scientific oral and poster presentations contributed to bring the conference to a very high international standard.
Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. This book, written by some of the most qualified experts in the field, not only fills a hole in the literature, but also bridges the gaps between all the different areas in this field. Translational research on tailored magnetic nanoparticles for biomedical applications spans a variety of disciplines, and putting together the most significant advances into a practical format is a challenging task. Balancing clinical applications with the underlying theory and foundational science behind these new discoveries, Magnetic Nanoparticles: From Fabrication to Clinical Applications supplies a toolbox of solutions and ideas for scientists in the field and for young researchers interested in magnetic nanoparticles.