Magnetism of Molecular Conductors

Magnetism of Molecular Conductors

Author: Manuel Almeida

Publisher: MDPI

Published: 2018-06-22

Total Pages: 237

ISBN-13: 3038429317

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Magnetism of Molecular Conductors" that was published in Magnetochemistry


Introduction to Molecular Magnetism

Introduction to Molecular Magnetism

Author: Cristiano Benelli

Publisher: John Wiley & Sons

Published: 2015-06-22

Total Pages: 464

ISBN-13: 3527335404

DOWNLOAD EBOOK

This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide. Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is one lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems. The result is an excellent textbook from both a scientific and pedagogic point of view.


Organic Conductors, Superconductors and Magnets: From Synthesis to Molecular Electronics

Organic Conductors, Superconductors and Magnets: From Synthesis to Molecular Electronics

Author: Lahcène Ouahab

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 9400710275

DOWNLOAD EBOOK

The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.


Molecular Magnetism: From Molecular Assemblies to the Devices

Molecular Magnetism: From Molecular Assemblies to the Devices

Author: E. Coronado

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 595

ISBN-13: 9401723192

DOWNLOAD EBOOK

Molecular Magnetism: From Molecular Assemblies to the Devices reviews the state of the art in the area. It is organized in two parts, the first of which introduces the basic concepts, theories and physical techniques required for the investigation of the magnetic molecular materials, comparing them with those used in the study of classical magnetic materials. Here the reader will find: (i) a detailed discussion of the electronic processes involved in the magnetic interaction mechanisms of molecular systems, including electron delocalization and spin polarization effects; (ii) a presentation of the available theoretical models based on spin and Hubbard Hamiltonians; and (iii) a description of the specific physical investigative techniques used to characterize the materials. The second part presents the different classes of existing magnetic molecular materials, focusing on the possible synthetic strategies developed to date to assemble the molecular building blocks ranging from purely organic to inorganic materials, as well as on their physical properties and potential applications. These materials comprise inorganic and organic ferro- and ferrimagnets, high nuclearity organic molecules and magnetic and metallic clusters, spin crossover systems, charge transfer salts (including fulleride salts and organic conductors and superconductors), and organized soft media (magnetic liquid crystals and Langmuir-Blodgett films).


Molecular Magnetism: From Molecular Assemblies to the Devices

Molecular Magnetism: From Molecular Assemblies to the Devices

Author: E. Coronado

Publisher: Springer Science & Business Media

Published: 1996-06-30

Total Pages: 606

ISBN-13: 0792341309

DOWNLOAD EBOOK

Molecular Magnetism: From Molecular Assemblies to the Devices reviews the state of the art in the area. It is organized in two parts, the first of which introduces the basic concepts, theories and physical techniques required for the investigation of the magnetic molecular materials, comparing them with those used in the study of classical magnetic materials. Here the reader will find: (i) a detailed discussion of the electronic processes involved in the magnetic interaction mechanisms of molecular systems, including electron delocalization and spin polarization effects; (ii) a presentation of the available theoretical models based on spin and Hubbard Hamiltonians; and (iii) a description of the specific physical investigative techniques used to characterize the materials. The second part presents the different classes of existing magnetic molecular materials, focusing on the possible synthetic strategies developed to date to assemble the molecular building blocks ranging from purely organic to inorganic materials, as well as on their physical properties and potential applications. These materials comprise inorganic and organic ferro- and ferrimagnets, high nuclearity organic molecules and magnetic and metallic clusters, spin crossover systems, charge transfer salts (including fulleride salts and organic conductors and superconductors), and organized soft media (magnetic liquid crystals and Langmuir-Blodgett films).


Molecular Magnetic Materials

Molecular Magnetic Materials

Author: Barbara Sieklucka

Publisher: John Wiley & Sons

Published: 2016-11-01

Total Pages: 512

ISBN-13: 352769420X

DOWNLOAD EBOOK

A comprehensive overview of this rapidly expanding interdisciplinary field of research. After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets. The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.


Organic Optoelectronic Materials

Organic Optoelectronic Materials

Author: Yongfang Li

Publisher: Springer

Published: 2015-05-30

Total Pages: 402

ISBN-13: 3319168622

DOWNLOAD EBOOK

This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.


Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds

Author: L.J. de Jongh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 9400918607

DOWNLOAD EBOOK

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.