Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging

Author: Nicole Seiberlich

Publisher: Academic Press

Published: 2020-11-18

Total Pages: 1094

ISBN-13: 0128170581

DOWNLOAD EBOOK

Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches


Medical Imaging for Health Professionals

Medical Imaging for Health Professionals

Author: Raymond M. Reilly

Publisher: John Wiley & Sons

Published: 2019-02-06

Total Pages: 552

ISBN-13: 1119120284

DOWNLOAD EBOOK

Describes the most common imaging technologies and their diagnostic applications so that pharmacists and other health professionals, as well as imaging researchers, can understand and interpret medical imaging science This book guides pharmacists and other health professionals and researchers to understand and interpret medical imaging. Divided into two sections, it covers both fundamental principles and clinical applications. It describes the most common imaging technologies and their use to diagnose diseases. In addition, the authors introduce the emerging role of molecular imaging including PET in the diagnosis of cancer and to assess the effectiveness of cancer treatments. The book features many illustrations and discusses many patient case examples. Medical Imaging for Health Professionals: Technologies and Clinical Applications offers in-depth chapters explaining the basic principles of: X-Ray, CT, and Mammography Technology; Nuclear Medicine Imaging Technology; Radionuclide Production and Radiopharmaceuticals; Magnetic Resonance Imaging (MRI) Technology; and Ultrasound Imaging Technology. It also provides chapters written by expert radiologists in well-explained terminology discussing clinical applications including: Cardiac Imaging; Lung Imaging; Breast Imaging; Endocrine Gland Imaging; Abdominal Imaging; Genitourinary Tract Imaging; Imaging of the Head, Neck, Spine and Brain; Musculoskeletal Imaging; and Molecular Imaging with Positron Emission Tomography (PET). Teaches pharmacists, health professionals, and researchers the basics of medical imaging technology Introduces all of the customary imaging tools—X-ray, CT, ultrasound, MRI, SPECT, and PET—and describes their diagnostic applications Explains how molecular imaging aids in cancer diagnosis and in assessing the effectiveness of cancer treatments Includes many case examples of imaging applications for diagnosing common diseases Medical Imaging for Health Professionals: Technologies and Clinical Applications is an important resource for pharmacists, nurses, physiotherapists, respiratory therapists, occupational therapists, radiological or nuclear medicine technologists, health physicists, radiotherapists, as well as researchers in the imaging field.


Biomedical Magnetic Resonance Technology

Biomedical Magnetic Resonance Technology

Author: Ching-nien Chen

Publisher: CRC Press

Published: 1989-01-01

Total Pages: 250

ISBN-13: 9780852741184

DOWNLOAD EBOOK

Nuclear magnetic resonance is now widely used in hospitals and research laboratories worldwide for medical purposes. Biomedical Magnetic Resonance Imaging is the first book to concentrate on how the instrumentation involved works rather than on the applications of the technique. In order to help the reader fully understand how an NMR imaging or spectroscopy system works the book takes an in-depth look at the principles behind the different components of the machine. Starting with a short history of the developments of nuclear magnetic resonance, the authors go on to describe all the different areas of instrumentation, such as the receiver and the magnet. A full explanation of the electronics and computer hardware and software appears for the first time in book form, completing this thorough view of an NMR system. Each chapter builds from a basic to a more sophisticated level of understanding and numerous illustrations help the reader to grasp the concepts. For the most part, mathematical descriptions appear at the ends of chapters, to place the emphasis of the book on the understanding of underlying principles. Biomedical Magnetic Resonance Imaging will be invaluable to all medical physicists, technicians, researchers and engineers working with NMR, containing as it does both theoretical and practical data to enable users to get the most out of their machines.


Magnetic Resonance Technology

Magnetic Resonance Technology

Author: Andrew G Webb

Publisher: Royal Society of Chemistry

Published: 2016-05-11

Total Pages: 402

ISBN-13: 1782623590

DOWNLOAD EBOOK

Magnetic resonance systems are used in almost every academic and industrial chemistry, physics and biochemistry department, as well as being one of the most important imaging modalities in clinical radiology. The design of such systems has become increasingly sophisticated over the years. Static magnetic fields increase continuously, large-scale arrays of receive elements are now ubiquitous in clinical MRI, cryogenic technology has become commonplace in high resolution NMR and is expanding rapidly in preclinical MRI, specialized high strength magnetic field gradients have been designed for studying the human connectome, and the commercial advent of ultra-high field human imaging has required new types of RF coils and static shim coils together with extensive electromagnetic simulations to ensure patient safety. This book covers the hardware and engineering that constitutes a magnetic resonance system, whether that be a high-resolution liquid or solid state system for NMR spectroscopy, a preclinical system for imaging animals or a clinical system used for human imaging. Written by a team of experts in the field, this book provides a comprehensive and instructional look at all aspects of current magnetic resonance technology, as well as outlooks for future developments.


Advanced Neuro MR Techniques and Applications

Advanced Neuro MR Techniques and Applications

Author: In-Young Choi

Publisher: Elsevier

Published: 2021-11-26

Total Pages: 638

ISBN-13: 0128224797

DOWNLOAD EBOOK

Advanced Neuro MR Techniques and Applications gives detailed knowledge of emerging neuro MR techniques and their specific clinical and neuroscience applications, showing their pros and cons over conventional and currently available advanced techniques. The book identifies the best available data acquisition, processing, reconstruction and analysis strategies and methods that can be utilized in clinical and neuroscience research. It is an ideal reference for MR scientists and engineers who develop MR technologies and/or support clinical and neuroscience research and for high-end users who utilize neuro MR techniques in their research, including clinicians, neuroscientists and psychologists. Trainees such as postdoctoral fellows, PhD and MD/PhD students, residents and fellows using or considering the use of neuro MR technologies will also be interested in this book. Presents a complete reference on advanced Neuro MR Techniques and Applications Edited and written by leading researchers in the field Suitable for a broad audience of MR scientists and engineers who develop MR technologies, as well as clinicians, neuroscientists and psychologists who utilize neuro MR techniques in their research


How does MRI work?

How does MRI work?

Author: Dominik Weishaupt

Publisher: Springer Science & Business Media

Published: 2008-02-01

Total Pages: 172

ISBN-13: 3540378456

DOWNLOAD EBOOK

A succinct introduction to the physics and function of magnetic resonance imaging with an emphasis on practical information. This thoroughly revised second edition is clearly structured. The underlying physical principles of the MR experiment are described and the basic pulse sequences commonly used in clinical MRI. It progresses to more advanced techniques such as parallel imaging and cardiovascular MR imaging. An extensive glossary offers rapid access to MRI terminology and will help those seeking to understand this interesting fascinating subject.


Electromagnetics in Magnetic Resonance Imaging

Electromagnetics in Magnetic Resonance Imaging

Author: Christopher M. Collins

Publisher: Morgan & Claypool Publishers

Published: 2016-03-01

Total Pages: 82

ISBN-13: 1681740834

DOWNLOAD EBOOK

In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.


Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging

Author: Zhi-Pei Liang

Publisher: Wiley-IEEE Press

Published: 2000

Total Pages: 442

ISBN-13:

DOWNLOAD EBOOK

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.


Understanding Magnetic Resonance Imaging

Understanding Magnetic Resonance Imaging

Author: Robert C. Smith

Publisher: CRC Press

Published: 1997-11-20

Total Pages: 242

ISBN-13: 9780849326585

DOWNLOAD EBOOK

Magnetic resonance imaging (MRI) is the most technically dependent imaging technique in radiology. To perform and interpret MRI studies correctly, an understanding of the basic underlying principles is essential. Understanding Magnetic Resonance Imaging explains the pulse sequences, imaging options, and coils used to produce MR images, providing a strong foundation for performing and interpreting imaging studies. The text is complemented by more than 100 figures and 25 photomicrographs illustrating the techniques discussed. Radiology residents, MR technologists, and radiologists should not be without Understanding Magnetic Resonance Imaging-the only single resource that explains all technical aspects of MRI, including recent advances, and presents all imaging options.


Breast MRI

Breast MRI

Author: Katja Pinker

Publisher: Academic Press

Published: 2022-09-22

Total Pages: 646

ISBN-13: 0128227494

DOWNLOAD EBOOK

Breast MRI: State of the Art and Future Directions provides a comprehensive overview of the current applications of breast MRI, including abbreviated MRI, as well as presenting technical recommendations, practical implementation and associated challenges in clinical routine. In addition, the book introduces novel MRI techniques, multimodality imaging, and advanced image processing coupled with AI, reviewing their potential for impeding and future clinical implementation. This book is a complete reference on state-of-the-art breast MRI methods suitable for MRI researchers, radiographers and clinicians.Breast cancer is one of the leading causes of death among women with early detection being the key to improved prognosis and survival. Magnetic resonance imaging (MRI) of the breast is undisputedly the most sensitive imaging method to detect cancer, with a higher detection rate than mammography, digital breast tomosynthesis, and ultrasound. - Spans the whole spectrum of breast MRI, including basic imaging techniques, indications, interpretation, and the latest cutting-edge techniques - Reviews multiparametric MRI and abbreviated protocols, providing an outlook on the future of this technique - Discusses the predictive and prognostic value of MRI as well as the evolving field of radiomics/genomics and AI