This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.
While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.
Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, The Interstellar Medium is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.
The Cologne-Bonn-Zermatt symposium is a well established series of conferences, occurring on a 5-year cycle, on the dense interstellar medium and related topics. The main results constitute valuable proceedings that offer everyone working in this field an authoritative and comprehensive source of reference.
The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals.
This book contains review articles of most of the topics addressed at the conf- ence on Simulations of Magnetohydrodynamic turbulence in astrophysics: recent achievements and perspectives which took place from July 2 to 6, 2001 at the Institut Henri Poincar ́e in Paris. We made the choice to publish these lectures in a tutorial form so that they can be read by a broad audience. As a result, this book does not give an exhaustive view of all the subjects addressed during the conference. The main objective of this workshop which gathered about 90 scientists from di?erent ?elds, was to present and confront recent results on the topic of t- bulence in magnetized astrophysical environments. A second objective was to discuss the latest generation of numerical codes, such as those using adaptive mesh re?nement (AMR) techniques. During a plenary discussion at the end of the workshop discussions were held on several topics, often at the heart of vivid controversies. Topics included the timescale for the dissipation of magneto-hydrodynamical (MHD) turbulence, the role of boundary conditions, the characteristics of imbalanced turbulence, the validity of the polytropic approach to Alfv ́en waves support within interst- lar clouds, the source of turbulence inside clouds devoid of stellar activity, the timescale for star formation, the Alfv ́en Mach number of interstellar gas motions, the formation process for helical ?elds in the interstellar medium. The impact of small upon large scales was also discussed.
Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. In most cases these phenomena involve turbulences, and thus are very challenging to understand and calculate. A sound knowledge is needed to tackle these problems. This work gives the basic information on turbulence in nature, comtaining the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.
This book describes and contextualises collisionless plasma theory, and in particular collisionless plasma equilibria. The Vlasov–Maxwell theory of collisionless plasmas is an increasingly important tool for modern plasma physics research: our ability to sustain plasma in a steady-state, and to mitigate instabilities, determines the success of thermonuclear fusion power plants on Earth; and our understanding of plasma aids in the prediction and mitigation of Space Weather effects on terrestrial environments and satellites. Further afield, magnetic reconnection is a ubiquitous energy release mechanism throughout the Universe, and modern satellites are now able to make in-situ measurements with kinetic scale resolution. To keep pace with these challenges and technological developments, a modern scientific discussion of plasma physics must enhance, and exploit, its ‘literacy’ in kinetic theory. For example, accurate analytical calculations and computer simulations of kinetic instabilities are predicated on a knowledge of Vlasov–Maxwell equilibria as an initial condition. This book highlights new fundamental work on Vlasov–Maxwell equilibria, of potential interest to mathematicians and physicists alike. Possible applications involve two of the most significant magnetic structures known to confine plasma and store energy: current sheets and flux tubes.