MATLAB Deep Learning

MATLAB Deep Learning

Author: Phil Kim

Publisher: Apress

Published: 2017-06-15

Total Pages: 162

ISBN-13: 1484228456

DOWNLOAD EBOOK

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.


MATLAB for Machine Learning

MATLAB for Machine Learning

Author: Giuseppe Ciaburro

Publisher: Packt Publishing Ltd

Published: 2017-08-28

Total Pages: 374

ISBN-13: 1788399390

DOWNLOAD EBOOK

Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.


Computer Neural Networks on MATLAB

Computer Neural Networks on MATLAB

Author: Daniel Okoh

Publisher: Createspace Independent Publishing Platform

Published: 2016-10-07

Total Pages: 54

ISBN-13: 9781539360957

DOWNLOAD EBOOK

Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.


Computational Methods for Deep Learning

Computational Methods for Deep Learning

Author: Wei Qi Yan

Publisher: Springer Nature

Published: 2020-12-04

Total Pages: 134

ISBN-13: 3030610810

DOWNLOAD EBOOK

Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.


Machine Learning with Neural Networks

Machine Learning with Neural Networks

Author: Bernhard Mehlig

Publisher: Cambridge University Press

Published: 2021-10-28

Total Pages: 262

ISBN-13: 1108849563

DOWNLOAD EBOOK

This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.


MATLAB Machine Learning

MATLAB Machine Learning

Author: Michael Paluszek

Publisher: Apress

Published: 2016-12-28

Total Pages: 335

ISBN-13: 1484222504

DOWNLOAD EBOOK

This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.


Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2

Author: M. Arif Wani

Publisher: Springer

Published: 2020-12-14

Total Pages: 300

ISBN-13: 9789811567582

DOWNLOAD EBOOK

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.


Neural Networks with MATLAB

Neural Networks with MATLAB

Author: Marvin L.

Publisher: Createspace Independent Publishing Platform

Published: 2016-10-23

Total Pages: 418

ISBN-13: 9781539701958

DOWNLOAD EBOOK

Neural Network Toolbox provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more importan features are de next: Deep learning, including convolutional neural networks and autoencoders Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) Unsupervised learning algorithms, including self-organizing maps and competitive layers Apps for data-fitting, pattern recognition, and clustering Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance Simulink blocks for building and evaluating neural networks and for control systems applications"