Luminescence of Solids gathers together much of the latest work on luminescent inorganic materials and new physical phenomena. The volume includes chapters covering -- the achievements that have led to the establishment of the fundamental laws of luminescence -- light sources, light-dispersing elements, detectors, and other experimental techniques -- models and mechanisms -- materials preparation, and -- future trends. This international collection of cutting-edge luminescence research is complemented by over 170 illustrations that bring to life the text's many vital concepts.
Microcharacterization of materials is a rapidly advancing field. Among the many electron and ion probe techniques, the cathodoluminescence mode of an electron probe instrument has reached a certain maturity, which is reflected by an increas ing number of publications in this field. The rapid rate of progress in applications of cathodoluminescence techniques in characterizing inorganic solids has been especially noticeable in recent years. The main purpose of the book is to outline the applications of cath odoluminescence techniques in the assessment of optical and electronic proper ties of inorganic solids, such as semiconductors, phosphors, ceramics, and min erals. The assessment provides, for example, information on impurity levels derived from cathodoluminescence spectroscopy, analysis of dopant concentra tions at a level that, in some cases, is several orders of magnitude lower than that attainable by x-ray microanalysis, the mapping of defects, and the determination of carrier lifetimes and the charge carrier capture cross sections of impurities. In order to make the book self-contained, some basic concepts of solid-state phys ics, as well as various cathodoluminescence techniques and the processes leading to luminescence phenomena in inorganic solids, are also described. We hope that this book will be useful to both scientists and graduate students interested in microcharacterization of inorganic solids. This book, however, was not intended as a definitive account of cathodoluminescence analysis of in organic solids. In considering the results presented here, readers should re member that many materials have properties that vary widely as a function of preparation conditions.
This text describes the technique of optical spectroscopy applied to problems in condensed matter physics. It relates theoretical understanding to experimental measurement, including discussion of the optical spectroscopy of inorganic insulators, with many illustrative examples. Symmetry arguments are developed from a formal group theoretical basis and are frequently used, and a special effort is made to treat the subject of lattice vibrations and to show how these can affect the spectroscopic properties of solids. The elements of laser theory are developed, and the authors also explore the use of optically detected magnetic resonance techniques for the investigation of semiconducting materials.
Everyone starting work in this field is faced with the lack of basic books. Here, two renowned researchers introduce the reader to luminescence and its applications, describing the principles of the luminescence processes in a clear way and dealing not only with physics, but also with the chemistry of systems. Particular attention is paid to materials such as lamp phosphors, cathode-ray and X-ray phosphors, scintillators and many other applications.
This volume provides the readers an in-depth, yet concise, overview of the physico-chemical structures, luminescence and related properties of II-VI compounds which are being utilised and exhaustively studied these days for their applications in LED's, modern optoelectronic devices, flat EL screens and panels, infrared detectors, photovoltaic and thermal solar energy converters etc. The book, therefore, should be useful to a wide variety of people (working in the field of luminescence and related properties of II-VI compounds, i.e. advanced graduate students) and serve as a review to researchers entering in this field and working on these materials. It should also be useful to solid state spectroscopists, lasers physicists; electronic and illuminating engineering people, and all those professionals using these materials.
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.
Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.
This practical guide to spectroscopy and inorganic materials meets the demand from academia and the science community for an introductory text that introduces the different optical spectroscopic techniques, used in many laboratories, for material characterisation. Treats the most basic aspects to be introduced into the field of optical spectroscopy of inorganic materials, enabling a student to interpret simple optical (absorption, reflectivity, emission and scattering) spectra Contains simple, illustrative examples and solved exercises Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics This is an ideal beginner’s guide for students with some previous knowledge in quantum mechanics and optics, as well as a reference source for professionals or researchers in materials science, especially the growing field of optical materials.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Since the first date of publication of this book in 1991, the subject of phosphors and luminescence has assumed even more importance in the overall scheme of technological development. Many new types of displays have appeared which depend upon phosphors in their operation. Some of these were pure conjecture in 1991 but are a reality in 2004. Descriptions have been included of the newer (as well as the older) types of displays in this edition along with an annotated portrait of the phosphors used in each category. Many of these new light sources promise to displace and make obsolete our current light sources, such as incandescent lamps, fluorescent lamps and the ubiquitous colour Cathode Ray Tube now used in TV and computer monitors. The importance of solid state science are summarized in the introductory chapters of this edition, and many of the chapters have been completely rewritten or revised. Each chapter has a special contribution to make in the overall understanding of the solid state science of phosphors and luminescence. Introduces the reader to the science and art of preparing inorganic luminescent materials Describes how and why luminescent materials exhibit such specific intrinsic properties Describes the science of the solid state and presents the exact formulas and conditions required to make all of the phosphors known at that time