Low-thrust Spacecraft Guidance and Control Using Proximal Policy Optimization

Low-thrust Spacecraft Guidance and Control Using Proximal Policy Optimization

Author: Daniel Martin Miller

Publisher:

Published: 2020

Total Pages: 107

ISBN-13:

DOWNLOAD EBOOK

Artificial intelligence is a rapidly developing field that promises to revolutionize spaceflight with greater robotic autonomy and innovative decision making. However, it remains to be determined which applications are best addressed using this new technology. In the coming decades, future spacecraft will be required to possess autonomous guidance and control in the complex, nonlinear dynamical regimes of cis-lunar space. In the realm of trajectory design, current methods struggle with local minima, and searching large solutions spaces. This thesis investigates the use of the Reinforcement Learning (RL) algorithm Proximal Policy Optimization (PPO) for solving low-thrust spacecraft guidance and control problems. First, an agent is trained to complete a 302 day mass-optimal low-thrust transfer between the Earth and Mars. This is accomplished while only providing the agent with information regarding its own state and that of Mars. By comparing these results to those generated by the Evolutionary Mission Trajectory Generator (EMTG), the optimality of the trajectory designed using PPO is assessed. Next, an agent is trained as an onboard regulator capable of correcting state errors and following pre-calculated transfers between libration point orbits. The feasibility of this method is examined by evaluating the agent’s ability to correct varying levels of initial state error via Monte Carlo testing. The generalizability of the agent’s control solution is appraised on three similar transfers of increasing difficulty not seen during the training process. The results show both the promise of the proposed PPO methodology and its limitations, which are discussed.


The Use of Artificial Intelligence for Space Applications

The Use of Artificial Intelligence for Space Applications

Author: Cosimo Ieracitano

Publisher: Springer Nature

Published: 2023-06-16

Total Pages: 444

ISBN-13: 3031257553

DOWNLOAD EBOOK

This book is an ideal and practical resource on the potential impact Artificial Intelligence (AI) can have in space sciences and applications. AI for Space Application presents a hands-on approach to browse in the subject and to learning how to do. AI is not yet fully accepted as a pervasive technology in space applications because they are often mission-critical and the cost of space equipment and modules raises skepticism on any practical use and reliability. However, it is evident that its potential impact on many aspects is dramatic. Starting from either actual or experimental realizations, the book accompanies the reader through such fascinating subjects like space exploration, autonomous navigation and landing, rover control and guidance on rough surfaces, image analysis automation for planet or star classification, and for space debris avoidance without human intervention. This kind of approach may facilitate further investigations on the same or similar subjects, as the future of space explorations is going toward adopting AI. The intended audience of the book are researchers from academia and space industries and practitioners in related start-ups.


Small Unmanned Aircraft

Small Unmanned Aircraft

Author: Randal W. Beard

Publisher: Princeton University Press

Published: 2012-02-26

Total Pages: 317

ISBN-13: 1400840600

DOWNLOAD EBOOK

Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.


Cooperative Path Planning of Unmanned Aerial Vehicles

Cooperative Path Planning of Unmanned Aerial Vehicles

Author: Antonios Tsourdos

Publisher: John Wiley & Sons

Published: 2010-11-09

Total Pages: 216

ISBN-13: 0470974648

DOWNLOAD EBOOK

An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.


Machine Learning Refined

Machine Learning Refined

Author: Jeremy Watt

Publisher: Cambridge University Press

Published: 2020-01-09

Total Pages: 597

ISBN-13: 1108480721

DOWNLOAD EBOOK

An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.


Advances in Control System Technology for Aerospace Applications

Advances in Control System Technology for Aerospace Applications

Author: Eric Feron

Publisher: Springer

Published: 2015-09-16

Total Pages: 192

ISBN-13: 3662476940

DOWNLOAD EBOOK

This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.


Engineering a Safer World

Engineering a Safer World

Author: Nancy G. Leveson

Publisher: MIT Press

Published: 2012-01-13

Total Pages: 555

ISBN-13: 0262297302

DOWNLOAD EBOOK

A new approach to safety, based on systems thinking, that is more effective, less costly, and easier to use than current techniques. Engineering has experienced a technological revolution, but the basic engineering techniques applied in safety and reliability engineering, created in a simpler, analog world, have changed very little over the years. In this groundbreaking book, Nancy Leveson proposes a new approach to safety—more suited to today's complex, sociotechnical, software-intensive world—based on modern systems thinking and systems theory. Revisiting and updating ideas pioneered by 1950s aerospace engineers in their System Safety concept, and testing her new model extensively on real-world examples, Leveson has created a new approach to safety that is more effective, less expensive, and easier to use than current techniques. Arguing that traditional models of causality are inadequate, Leveson presents a new, extended model of causation (Systems-Theoretic Accident Model and Processes, or STAMP), then shows how the new model can be used to create techniques for system safety engineering, including accident analysis, hazard analysis, system design, safety in operations, and management of safety-critical systems. She applies the new techniques to real-world events including the friendly-fire loss of a U.S. Blackhawk helicopter in the first Gulf War; the Vioxx recall; the U.S. Navy SUBSAFE program; and the bacterial contamination of a public water supply in a Canadian town. Leveson's approach is relevant even beyond safety engineering, offering techniques for “reengineering” any large sociotechnical system to improve safety and manage risk.


Tactical and Strategic Missile Guidance

Tactical and Strategic Missile Guidance

Author: Paul Zarchan

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Published: 1997

Total Pages: 650

ISBN-13:

DOWNLOAD EBOOK

For both experts and novices, presents the principles of both tactical and strategic missile guidance in a common language, notation, and perspective, with numerous examples to illustrate the concepts. This revised edition (1st ed., 1990) adds three new chapters on the fundamentals of endoatmospheric ballistic targets; a new chapter showing how covariance analysis can be used to analyze missile guidance systems; two new appendices; and included Macintosh and IBM compatible formatted disks containing the FORTRAN code listings presented in the text. Annotation copyright by Book News, Inc., Portland, OR