Low-Power High-Resolution Analog to Digital Converters

Low-Power High-Resolution Analog to Digital Converters

Author: Amir Zjajo

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 311

ISBN-13: 9048197252

DOWNLOAD EBOOK

With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously. The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.


High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

Author: Weitao Li

Publisher: Springer

Published: 2017-08-01

Total Pages: 181

ISBN-13: 3319620126

DOWNLOAD EBOOK

This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.


Time-to-Digital Converters

Time-to-Digital Converters

Author: Stephan Henzler

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 132

ISBN-13: 9048186285

DOWNLOAD EBOOK

Micro-electronics and so integrated circuit design are heavily driven by technology scaling. The main engine of scaling is an increased system performance at reduced manufacturing cost (per system). In most systems digital circuits dominate with respect to die area and functional complexity. Digital building blocks take full - vantage of reduced device geometries in terms of area, power per functionality, and switching speed. On the other hand, analog circuits rely not on the fast transition speed between a few discrete states but fairly on the actual shape of the trans- tor characteristic. Technology scaling continuously degrades these characteristics with respect to analog performance parameters like output resistance or intrinsic gain. Below the 100 nm technology node the design of analog and mixed-signal circuits becomes perceptibly more dif cult. This is particularly true for low supply voltages near to 1V or below. The result is not only an increased design effort but also a growing power consumption. The area shrinks considerably less than p- dicted by the digital scaling factor. Obviously, both effects are contradictory to the original goal of scaling. However, digital circuits become faster, smaller, and less power hungry. The fast switching transitions reduce the susceptibility to noise, e. g. icker noise in the transistors. There are also a few drawbacks like the generation of power supply noise or the lack of power supply rejection.


Power-efficient Two-step Pipelined Analog-to-digital Conversion

Power-efficient Two-step Pipelined Analog-to-digital Conversion

Author: Ho-Young Lee

Publisher:

Published: 2011

Total Pages: 107

ISBN-13:

DOWNLOAD EBOOK

Hand-held devices are among the most successful consumer electronics in modern society. Behind these successful devices, lies a key analog design technique that involves high-performance analog-to-digital conversion combined with very low power consumption. This dissertation presents two different approaches to achieving high power efficiency from a two-step pipelined architecture, which is generally known as one of the most power-consuming analog-to-digital converters. In the first approach, an analog feedback loop of a residue amplifier in a two-step pipelined analog-to-digital converter is reconfigured digitally using a single comparator and an R-2R digital-to-analog converter. This comparator-based structure can reduce power consumption of a conventional two-step pipelined analog-to-digital converter which consists of an opamp-based residue amplifier followed by a second- stage analog-to-digital converter. In addition, this dissertation includes circuit design techniques that provide a digital offset correction for the comparator-based two-step structure, binary-weighted switching for an R-2R digital-to-analog converter, and reference trimming for a flash analog-to-digital converter. A 10-b prototype analog-to-digital converter achieves an FOM of 121 fJ/conversion-step under 0.7-V supply. The second approach provides a way to achieve low power consumption for a high-resolution two-step pipelined analog-to-digital converter. An opamp is designed to consume optimized static power using a quarter-scaled residue gain together with minimized loading capacitance from the proposed second stage. A 14-b prototype analog-to-digital converter achieves an FOM of 31.3 fJ/conversion-step with an ENOB of 11.4 b, which is the lowest FOM in high-resolution analog-to-digital converters having greater than an ENOB of 10 b. Finally, the potential for further power reduction in a two-step pipelined analog-to-digital converter is discussed as a topic for future research.


Modular Low-Power, High-Speed CMOS Analog-to-Digital Converter of Embedded Systems

Modular Low-Power, High-Speed CMOS Analog-to-Digital Converter of Embedded Systems

Author: Keh-La Lin

Publisher: Springer Science & Business Media

Published: 2006-01-14

Total Pages: 270

ISBN-13: 0306487268

DOWNLOAD EBOOK

One of the main trends of microelectronics is toward design for integrated systems, i.e., system-on-a-chip (SoC) or system-on-silicon (SoS). Due to this development, design techniques for mixed-signal circuits become more important than before. Among other devices, analog-to-digital and digital-to-analog converters are the two bridges between the analog and the digital worlds. Besides, low-power design technique is one of the main issues for embedded systems, especially for hand-held applications. Modular Low-Power, High-Speed CMOS Analog-to-Digital Converter for Embedded Systems aims at design techniques for low-power, high-speed analog-to-digital converter processed by the standard CMOS technology. Additionally this book covers physical integration issues of A/D converter integrated in SoC, i.e., substrate crosstalk and reference voltage network design.


Analog-Digital Converters for Industrial Applications Including an Introduction to Digital-Analog Converters

Analog-Digital Converters for Industrial Applications Including an Introduction to Digital-Analog Converters

Author: Frank Ohnhäuser

Publisher: Springer

Published: 2015-07-01

Total Pages: 340

ISBN-13: 3662470209

DOWNLOAD EBOOK

This book offers students and those new to the topic of analog-to-digital converters (ADCs) a broad introduction, before going into details of the state-of-the-art design techniques for SAR and DS converters, including the latest research topics, which are valuable for IC design engineers as well as users of ADCs in applications. The book then addresses important topics, such as correct connectivity of ADCs in an application, the verification, characterization and testing of ADCs that ensure high-quality end products. Analog-to-digital converters are the central element in any data processing system and regulation loops such as modems or electrical motor drives. They significantly affect the performance and resolution of a system or end product. System development engineers need to be familiar with the performance parameters of the converters and understand the advantages and disadvantages of the various architectures. Integrated circuit development engineers have to overcome the problem of achieving high performance and resolution with the lowest possible power dissipation, while the digital circuitry generates distortion in supply, ground and substrate. This book explains the connections and gives suggestions for obtaining the highest possible resolution. Novel trends are illustrated in the design of analog-to-digital converters based on successive approximation and the difficulties in the development of continuous-time delta-sigma modulators are also discussed.


The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

Author: Shahriar Rabii

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 198

ISBN-13: 1461551056

DOWNLOAD EBOOK

Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.


Novel Architecture of Analog to Digital Converter

Novel Architecture of Analog to Digital Converter

Author: Narula Swina

Publisher:

Published: 2023-02-28

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

A number of digital applications e.g. professional cameras, voice communication, video digitizers, data imaging and many more require low power, high speed, and high resolution analog to digital converters. But for high speed data communication systems with increased resolution and high sampling rates, different linear and nonlinear errors of ADCs come in picture which is a big challenge for design engineers to remove.A unique digital background calibration technique, a combination of signal dependent dithering with butterfly shuffler is proposed here for multi-bit, SHA-less 16-bit, 125 MS/s Pipelined ADC. The purpose of the research work was to integrate different stages of different sizes to achieve 16-bit error-free output at high sampling rate by using unique background calibration technique for SHA-less circuit. Because the achieved values of SNDR and SFDR are high with low power consumption, so this proposed ADC is suitable for high resolution applications like video communication. Without using sample and hold amplifier we saved power and reduced noise interference. Additional advantage of SHA removal is to use a smaller input sampling capacitor which increases ADC's drivability. A new timing diagram is also proposed here to resolve the sampling clock skew. The ultimate multi-bit front-end proposed here helped to save further power.The proposed comparator is able to avoid the kickback as compared to traditional comparators. For the initial multi-bit stage, a two-stage gain boosted amplifier is used to achieve high gain and to reduce the nonlinear gain errors. Because the non-idealities of Op-amp and capacitor mismatching errors, the ADC transfer function may achieve erroneous values by DNL errors, so the proposed technique is made capable to remove linear gain and offset errors and capacitor mismatching errors. Also the small signal linearity errors removed with the proposed architecture of 16-bit Pipelined ADC. Along with these advantages, high values of SNDR and SFDR has achieved, which is a top most indicator to distinguish the signal out from other noise and spurious frequencies.


Low Power High Resolution Data Converter in Digital CMOS Technology

Low Power High Resolution Data Converter in Digital CMOS Technology

Author: Zhiliang Zheng

Publisher:

Published: 1999

Total Pages: 118

ISBN-13:

DOWNLOAD EBOOK

The advance of digital IC technology has been very fast, as shown by rapid development of DSP, digital communication and digital VLSI. Within electronic signal processing, analog-to-digital conversion is a key function, which converts the analog signal into digital form for further processing. Recently, low-voltage and low-power have become also an important factors in IC development. This thesis investigates some novel techniques for the design of low-power high-performance A/D converters in CMOS technology, and the non-ideal switched-capacitor effects of (SC) circuits. A new successive-approximation A/D converter is proposed with a novel error cancellation scheme. This A/D converter needs only a simple opamp, a comparator, and a few switches and capacitors. It can achieve high resolution with relative low power consumption. A new ratio-independent cyclic A/D converter is also proposed with techniques to compensate for the non-ideal effects. The implementation include a new differential sampling that is used to achieve ratio-independent multiple-by-two operation. Extensive simulations were performed to demonstrate the excellent performance of these data converters.