Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers

Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers

Author: Clinton Taubert

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Electrically conductive adhesives (ECAs) have recently become a critical technological area in component development behind solar cell packaging for die attachment, solderless interconnects, and heat dissipation. The standard example of an ECA employs the use of conductive fillers within a polymeric matrix or host to render the final composite conductive. Electrical conductivity of an ECA is governed by percolation theory, wherein the necessary fillers that host electrons transfer, via physical connection or tunneling, must reach some critical volume fraction to accommodate probable conductive pathways that would be large enough to be considered isotropic [1,2]. Many fillers exist for use in this role, but commonly silver is chosen for its high electrical and thermal conductivities [3]. However, silver (especially micro- or nano-structured) remains an expensive commodity, and typical volume fraction loadings in ECA can approach >30%. This is necessary as the theoretical critical volume fraction required for monodisperse spheres in a randomly oriented isotropic system is ~16% [4]. Such excessive filler loading not only invalidates economic feasibility, but also deteriorates mechanical properties inherent for the host polymer. To mitigate the critical percolation threshold (pc) for volume fraction loading of a filler, combative methods are articulated herein. One approach is to use low-dimensional, high-aspect ratio fillers, such as graphene and carbon nanotubes (CNTs), which have been shown to lower pc [5,6]. Typically, such fillers are more expensive than silver; however, given the low-loading implied to achieve a percolated network, this approach could improve the economic feasibility as an added filler for reducing total filler loading required [7]. In this work, commercial CNTs are employed as a high-aspect ratio filler for the reduction of silver filler loading in an ECA system. Graphene nanoplatelets are also synthesized and used to demonstrate a route for creating tailored high-aspect ratio, low-dimensional fillers which are effective at generating a percolated network at relatively low loading. Utilizing a pre-percolated CNT system, a hybrid silver/CNT system was then generated to achieve enhanced conductivity at lower total loading over pure silver systems, which exhibited a conductivity of 54 S/cm at 12 vol.% loading with a CNT loading of only 8 wt.%. 1. Aharoni, S.M. Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix J. Appl. Phys. 43, 2463-2465, (1972) 2 .McLachlan, D.S. et al. Electrical Resistivity of Composites. J. Am. Ceram. Soc. 73, 2187-2203 (1990) 3. Morris, J. E. Electrically Conductive Adhesives, A. Comprehensive Review. 37-77 (1999) 4. Bueche, F. Electrical resistivity of Conducting Particles in an Insulating Matrix. J. Appl. Phys. 43, 4837-8 (1972) 5. Lin, X.; Lin, F., Proceedings of High Density Microsystem Design an Packaging, Conference, Shanhai, China. 382-384 (2004) 6. Marcq, F. et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectron. Reliab. 51(7), 1230-1234 (2011) 7. Lyons, A. M. Electrically conductive adhesives, Effect of particle composition and size distribution. Polym. Eng. Sci. 31(6), 445-450, (1991)


Electrically Conductive Adhesives

Electrically Conductive Adhesives

Author: Rajesh Gomatam

Publisher: CRC Press

Published: 2008-12-23

Total Pages: 436

ISBN-13: 9004187820

DOWNLOAD EBOOK

With all the environmental concerns and constraints today and stricter future regulations, there is a patent need to replace materials noxious to the environment by environmentally-friendly alternatives. Electrically conductive adhesives (ECAs) are one such example. ECAs offer an excellent alternative to lead-solder interconnects for microelectroni


Polymeric Materials

Polymeric Materials

Author: Marta Fernández-García

Publisher: MDPI

Published: 2019-05-28

Total Pages: 342

ISBN-13: 3038979627

DOWNLOAD EBOOK

This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.


Carbon Nanotube-polymer Composites

Carbon Nanotube-polymer Composites

Author: Dimitrios Tasis

Publisher: Royal Society of Chemistry

Published: 2013

Total Pages: 293

ISBN-13: 1849735689

DOWNLOAD EBOOK

The purpose of this book is to summarize the basic chemical aspects for obtaining multifunctional carbon nanotube-based polymer composites, but also to highlight some of the most remarkable advances that occurred in the field during the last recent years.


Multifunctional Epoxy Resins

Multifunctional Epoxy Resins

Author: Nishar Hameed

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 439

ISBN-13: 9811960380

DOWNLOAD EBOOK

This book consolidates information about multifunctional epoxy as a frontier material, its composites, engineering and applications in a very detailed manner that encompasses the entire spectrum of up-to-date literature citations, current market trends and patents. It highlights latest experimental and theoretical studies on the atypical properties of epoxy resins such as self-healing, thermally and electrically conductivity; and its applications in devices where there is reliance on unsustainable sourced inorganic materials with comparable properties. It caters to polymer chemists, physicists and engineers who are interested in the field of next generation epoxy polymers.


Adhesives Technology Handbook

Adhesives Technology Handbook

Author: Sina Ebnesajjad

Publisher: William Andrew

Published: 2014-11-26

Total Pages: 437

ISBN-13: 0323356028

DOWNLOAD EBOOK

Covering a wide range of industrial applications across sectors including medical applications, automotive/aerospace, packaging, electronics, and consumer goods, this book provides a complete guide to the selection of adhesives, methods of use, industrial applications, and the fundamentals of adhesion. Dr Ebnesajjad examines the selection of adhesives and adhesion methods and challenges for all major groups of substrate including plastics (thermosets and thermoplastics), elastomers, metals, ceramics and composite materials. His practical guidance covers joint design and durability, application methods, test methods and troubleshooting techniques. The science and technology of adhesion, and the principles of adhesive bonding are explained in a way that enhances the reader's understanding of the fundamentals that underpin the successful use and design of adhesives. The third edition has been updated throughout to include recent developments in the industry, with new sections covering technological advances such as nanotechnology, micro adhesion systems, and the replacement of toxic chromate technology. Provides practitioners of adhesion technology with a complete guide to bonding materials successfully Covers the whole range of commonly used substrates including plastics, metals, elastomers and ceramics, explaining basic principles and describing common materials and application techniques Introduces the range of commercially available adhesives and the selection process alongside the science and technology of adhesion


Electrical, Thermomechanical and Reliability Modeling of Electrically Conductive Adhesives

Electrical, Thermomechanical and Reliability Modeling of Electrically Conductive Adhesives

Author: Bin Su

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The first part of the dissertation focuses on understanding and modeling the conduction mechanism of conductive adhesives. The contact resistance is measured between silver rods with different coating materials, and the relationship between tunnel resistivity and contact pressure is obtained based on the experimental results. Three dimensional microstructure models and resistor networks are built to simulate electrical conduction in conductive adhesives. The bulk resistivity of conductive adhesives is calculated from the computer-simulated model. The effects of the geometric properties of filler particles, such as size, shape and distribution, on electrical conductivity are studied by the method of factorial design. The second part of the dissertation evaluates the reliability and investigates the failure mechanism of conductive adhesives subjected to fatigue loading, moisture conditioning and drop impacts. In fatigue tests it is found that electrical conduction failure occurs prior to mechanical failure. The experimental data show that electrical fatigue life can be described well by the power law equation. The electrical failure of conductive adhesives in fatigue is due to the impaired epoxy-silver interfacial adhesion. Moisture uptake in conductive adhesives is measured after moisture conditioning and moisture recovery. The fatigue life of conductive adhesives is significantly shortened after moisture conditioning and moisture recovery. The moisture accelerates the debonding of silver flakes from epoxy resin, which results in a reduced fatigue life. Drop tests are performed on test vehicles with conductive adhesive joints. The electrical conduction failure happens at the same time as joint breakage. The drop failure life is found to be correlated with the strain energy caused by the drop impact, and a power law life model is proposed for drop tests. The fracture is found to be interfacial between the conductive adhesive joints and components/substrates. This research provides a comprehensive understanding of the conduction mechanism of conductive adhesives. The computer-simulated modeling approach presents a useful design tool for the conductive adhesive industry. The reliability tests and proposed failure mechanisms are helpful to prevent failure of conductive adhesives in electronic packages. Moreover, the fatigue and impact life models provide tools in product design and failure prediction of conductive adhesives.


Introduction To Percolation Theory

Introduction To Percolation Theory

Author: Dietrich Stauffer

Publisher: CRC Press

Published: 2018-12-10

Total Pages: 192

ISBN-13: 1482272377

DOWNLOAD EBOOK

This work dealing with percolation theory clustering, criticallity, diffusion, fractals and phase transitions takes a broad approach to the subject, covering basic theory and also specialized fields like disordered systems and renormalization groups.