Infrared Nanophotonics

Infrared Nanophotonics

Author: Tadaaki Nagao

Publisher: MDPI

Published: 2021-04-21

Total Pages: 174

ISBN-13: 3036501746

DOWNLOAD EBOOK

Infrared light radiates from almost all the matter on earth, and its strategic use will be an important issue for the enhancement of human life and the sustainable development of modern industry. Since its frequency is in the same region as phonons or molecular vibrations of materials, measuring its emission or absorption spectra helps us in characterizing and identifying materials in a non-destructive manner. Meanwhile, if we can spectroscopically design infrared emission by tuning chemical composition or artificially controlling nano- to mesoscale structures, this will have a great impact on industrial applications, such as thermophotovoltaics, energy-saving drying furnaces, spectroscopic infrared light sources, and various types of infrared sensors. In this Special Issue, we encourage submissions from researchers who are working on infrared nanophotonics based on MEMS/NEMS, and nanomaterials science, ranging from materials synthesis, to device fabrications, electromagnetic simulations, and thermal managements. Important topics of growing interest are wavelength-selective infrared emitters and detectors, where we can see rapid development in the fields of nano-plasmonics and metamaterials, and we invite such topics for inclusion in this Special Issue. We also encourage submissions on nano-materials science such as on graphene-based infrared detectors/emitters, and nanostructured narrow-band gap semiconductors.


Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors

Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors

Author: Sourav Adhikary

Publisher: Springer

Published: 2017-09-06

Total Pages: 72

ISBN-13: 9811052905

DOWNLOAD EBOOK

This book introduces some alternative methods for enhancing the performance of In(Ga)As/GaAs-based quantum dot infrared photodetectors (QDIPs). In(Ga)As/GaAs-based QDIPs and focal plane array (FPA) cameras have wide application in fields such as military and space science. The core of the study uses a combination of quaternary In0.21Al0.21Ga0.58As and GaAs spacer as a capping layer on In(Ga)As/GaAs quantum dots in the active region of the detector structure. For the purposes of optimization, three types of samples growths are considered with different capping thicknesses. The results presented include TEM, XRD and photoluminescence studies that compare combination barrier thickness and its effect on structural and optical properties. Compressive strain within the heterostructure, thermal stability in high temperature annealing, spectral response, shifts in PL peaks peak,and responsivity and detectivity are all considered. The results also present a narrow spectral width that was obtained by using InAs QDs which is very useful for third generation FPA camera application. The book details effect of post-growth rapid thermal annealing on device characteristics and methods to enhance responsivity and peak detectivity. The contents of this book will be useful to researchers and professionals alike.


Advances in Infrared Photodetectors

Advances in Infrared Photodetectors

Author:

Publisher: Elsevier

Published: 2011-05-03

Total Pages: 385

ISBN-13: 0123813387

DOWNLOAD EBOOK

Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry


Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology

Author:

Publisher: Newnes

Published: 2011-01-28

Total Pages: 3572

ISBN-13: 0080932282

DOWNLOAD EBOOK

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts


Infrared and Terahertz Detectors, Third Edition

Infrared and Terahertz Detectors, Third Edition

Author: Antoni Rogalski

Publisher: CRC Press

Published: 2019-01-10

Total Pages: 1067

ISBN-13: 1351984764

DOWNLOAD EBOOK

This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It contains a complete overhaul of the contents including several new chapters and a new section on terahertz detectors and systems. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding. The other dedicated sections focus on thermal detectors, photon detectors, and focal plane arrays.


Quantum Dot Photodetectors

Quantum Dot Photodetectors

Author: Xin Tong

Publisher: Springer Nature

Published: 2021-09-17

Total Pages: 319

ISBN-13: 3030742709

DOWNLOAD EBOOK

This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.


Impact of Ion Implantation on Quantum Dot Heterostructures and Devices

Impact of Ion Implantation on Quantum Dot Heterostructures and Devices

Author: Arjun Mandal

Publisher: Springer

Published: 2017-06-02

Total Pages: 84

ISBN-13: 9811043345

DOWNLOAD EBOOK

This book looks at the effects of ion implantation as an effective post-growth technique to improve the material properties, and ultimately, the device performance of In(Ga)As/GaAs quantum dot (QD) heterostructures. Over the past two decades, In(Ga)As/GaAs-based QD heterostructures have marked their superiority, particularly for application in lasers and photodetectors. Several in-situ and ex-situ techniques that improve material quality and device performance have already been reported. These techniques are necessary to maintain dot density and dot size uniformity in QD heterostructures and also to improve the material quality of heterostructures by removing defects from the system. While rapid thermal annealing, pulsed laser annealing and the hydrogen passivation technique have been popular as post-growth methods, ion implantation had not been explored largely as a post-growth method for improving the material properties of In(Ga)As/GaAs QD heterostructures. This work attempts to remedy this gap in the literature. The work also looks at introduction of a capping layer of quaternary alloy InAlGaAs over these In(Ga)As/GaAs QDs to achieve better QD characteristics. The contents of this volume will prove useful to researchers and professionals involved in the study of QDs and QD-based devices.


Quantum Dot Devices

Quantum Dot Devices

Author: Zhiming M. Wang

Publisher: Springer Science & Business Media

Published: 2012-05-24

Total Pages: 375

ISBN-13: 1461435706

DOWNLOAD EBOOK

Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.


Infrared Detectors

Infrared Detectors

Author: Antonio Rogalski

Publisher: CRC Press

Published: 2010-11-15

Total Pages: 900

ISBN-13: 1420076728

DOWNLOAD EBOOK

Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to un


Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures

Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures

Author: Saumya Sengupta

Publisher: Springer

Published: 2017-08-04

Total Pages: 77

ISBN-13: 9811057028

DOWNLOAD EBOOK

This book explores the effects of growth pause or ripening time on the properties of quantum dots(QDs). It covers the effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs. The effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs are discussed. The book offers insight into InAs/GaAs bilayer QD heterostructures with very thin spacer layers and discusses minimum spacer thickness required to grow electronically coupled bilayer QD heterostructures. These techniques make bilayer QD heterostructures a better choice over the single layer and uncoupled multilayer QD heterostructure. Finally, the book discusses sub-monolayer (SML) growth technique to grow QDs. This recent technique has been proven to improve the device performance significantly. The contents of this monograph will prove useful to researchers and professionals alike.