This proceedings volume contains most of the invited talks presented at the colloquium. The main topics treated are the model theory of arithmetic and algebra, the semantics of natural languages, and applications of mathematical logic to complexity theory. The volume contains both surveys by acknowledged experts and original research papers presenting advances in these disciplines.
Fourteen papers presented at the 1987 European Summer Meeting of the Association for Symbolic Logic are collected in this volume.The main areas covered by the conference were Logic, Set Theory, Recursion Theory, Model Theory, Logic for Computer Science and Semantics of Natural Languages.
Fourteen papers presented at the 1987 European Summer Meeting of the Association for Symbolic Logic are collected in this volume. The main areas covered by the conference were Logic, Set Theory, Recursion Theory, Model Theory, Logic for Computer Science and Semantics of Natural Languages.
The ideology of the theory of fewnomials is the following: real varieties defined by "simple", not cumbersome, systems of equations should have a "simple" topology. One of the results of the theory is a real transcendental analogue of the Bezout theorem: for a large class of systems of *k transcendental equations in *k real variables, the number of roots is finite and can be explicitly estimated from above via the "complexity" of the system. A more general result is the construction of a category of real transcendental manifolds that resemble algebraic varieties in their properties. These results give new information on level sets of elementary functions and even on algebraic equations. The topology of geometric objects given via algebraic equations (real-algebraic curves, surfaces, singularities, etc.) quickly becomes more complicated as the degree of the equations increases. It turns out that the complexity of the topology depends not on the degree of the equations but only on the number of monomials appearing in them. This book provides a number of theorems estimating the complexity of the topology of geometric objects via the cumbersomeness of the defining equations. In addition, the author presents a version of the theory of fewnomials based on the model of a dynamical system in the plane. Pfaff equations and Pfaff manifolds are also studied.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields. This volume provides an insightful introduction to this active area, concentrating on connections to stability theory.
Proof complexity is a rich subject drawing on methods from logic, combinatorics, algebra and computer science. This self-contained book presents the basic concepts, classical results, current state of the art and possible future directions in the field. It stresses a view of proof complexity as a whole entity rather than a collection of various topics held together loosely by a few notions, and it favors more generalizable statements. Lower bounds for lengths of proofs, often regarded as the key issue in proof complexity, are of course covered in detail. However, upper bounds are not neglected: this book also explores the relations between bounded arithmetic theories and proof systems and how they can be used to prove upper bounds on lengths of proofs and simulations among proof systems. It goes on to discuss topics that transcend specific proof systems, allowing for deeper understanding of the fundamental problems of the subject.
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.