Lectures on Logarithmic Algebraic Geometry

Lectures on Logarithmic Algebraic Geometry

Author: Arthur Ogus

Publisher: Cambridge University Press

Published: 2018-11-08

Total Pages: 559

ISBN-13: 1107187737

DOWNLOAD EBOOK

A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.


Logarithmic Forms and Diophantine Geometry

Logarithmic Forms and Diophantine Geometry

Author: A. Baker

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages:

ISBN-13: 1139468871

DOWNLOAD EBOOK

There is now much interplay between studies on logarithmic forms and deep aspects of arithmetic algebraic geometry. New light has been shed, for instance, on the famous conjectures of Tate and Shafarevich relating to abelian varieties and the associated celebrated discoveries of Faltings establishing the Mordell conjecture. This book gives an account of the theory of linear forms in the logarithms of algebraic numbers with special emphasis on the important developments of the past twenty-five years. The first part covers basic material in transcendental number theory but with a modern perspective. The remainder assumes some background in Lie algebras and group varieties, and covers, in some instances for the first time in book form, several advanced topics. The final chapter summarises other aspects of Diophantine geometry including hypergeometric theory and the André-Oort conjecture. A comprehensive bibliography rounds off this definitive survey of effective methods in Diophantine geometry.


European Congress of Mathematics

European Congress of Mathematics

Author: Carles Casacuberta

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 630

ISBN-13: 3034882661

DOWNLOAD EBOOK

This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.


Barsotti Symposium in Algebraic Geometry

Barsotti Symposium in Algebraic Geometry

Author: Valentino Cristante

Publisher: Academic Press

Published: 2014-07-21

Total Pages: 306

ISBN-13: 1483217620

DOWNLOAD EBOOK

Barsotti Symposium in Algebraic Geometry contains papers corresponding to the lectures given at the 1991 memorial meeting held in Abano Terme in honor of Iacopo Barsotti. This text reflects Barsotti's significant contributions in the field. This book is composed of 10 chapters and begins with a review of the centers of three-dimensional skylanin algebras. The succeeding chapters deal with the theoretical aspects of the Abelian varieties, Witt realization of p-Adic Barsotti-Tate Groups, and hypergeometric series and functions. These topics are followed by discussions of logarithmic spaces and the estimates for and inequalities among A-numbers. The closing chapter describes the moduli of Abelian varieties in positive characteristic. This book will be of value to mathematicians.


Tropical Algebraic Geometry

Tropical Algebraic Geometry

Author: Ilia Itenberg

Publisher: Springer Science & Business Media

Published: 2009-05-30

Total Pages: 113

ISBN-13: 3034600488

DOWNLOAD EBOOK

These notes present a polished introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The notes are based on a seminar at the Mathematical Research Center in Oberwolfach in October 2004. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.


Tropical Geometry and Mirror Symmetry

Tropical Geometry and Mirror Symmetry

Author: Mark Gross

Publisher: American Mathematical Soc.

Published: 2011-01-20

Total Pages: 338

ISBN-13: 0821852329

DOWNLOAD EBOOK

Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.


Complex Analysis and Algebraic Geometry

Complex Analysis and Algebraic Geometry

Author: Kunihiko Kodaira

Publisher: CUP Archive

Published: 1977

Total Pages: 424

ISBN-13: 9780521217774

DOWNLOAD EBOOK

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.


College Algebra

College Algebra

Author: Jay Abramson

Publisher:

Published: 2018-01-07

Total Pages: 892

ISBN-13: 9789888407439

DOWNLOAD EBOOK

College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory


114 Exponent and Logarithm Problems from the AwesomeMath Summer Program

114 Exponent and Logarithm Problems from the AwesomeMath Summer Program

Author: Titu Andreescu

Publisher:

Published: 2016-12-05

Total Pages: 150

ISBN-13: 9780996874564

DOWNLOAD EBOOK

This book covers the theoretical background of exponents and logarithms, as well as some of their important applications. Starting from the basics, the reader will gain familiarity with how the exponential and logarithmic functions work, and will then learn how to solve different problems with them. The authors give the readers the opportunity to test their understanding of the topics discussed by exposing them to 114 carefully chosen problems, whose full solutions can be found at the end of the book.


Precalculus

Precalculus

Author: Jay P. Abramson

Publisher:

Published: 2014-10-23

Total Pages: 2000

ISBN-13: 9781938168345

DOWNLOAD EBOOK

"Precalculus is intended for college-level precalculus students. Since precalculus courses vary from one institution to the next, we have attempted to meet the needs of as broad an audience as possible, including all of the content that might be covered in any particular course. The result is a comprehensive book that covers more ground than an instructor could likely cover in a typical one- or two-semester course; but instructors should find, almost without fail, that the topics they wish to include in their syllabus are covered in the text. Many chapters of OpenStax College Precalculus are suitable for other freshman and sophomore math courses such as College Algebra and Trigonometry; however, instructors of those courses might need to supplement or adjust the material. OpenStax will also be releasing College Algebra and Algebra and trigonometry titles tailored to the particular scope, sequence, and pedagogy of those courses."--Preface.