Local Properties of Distributions of Stochastic Functionals

Local Properties of Distributions of Stochastic Functionals

Author: Yu. A. Davydov, M. A. Lifshits, andN. V. Smorodina

Publisher: American Mathematical Soc.

Published: 1998-02-10

Total Pages: 208

ISBN-13: 9780821897836

DOWNLOAD EBOOK

This book investigates the distributions of functionals defined on the sample paths of stochastic processes. It contains systematic exposition and applications of three general research methods developed by the authors. (i) The method of stratifications is used to study the problem of absolute continuity of distribution for different classes of functionals under very mild smoothness assumptions. It can be used also for evaluation of the distribution density of the functional. (ii) The method of differential operators is based on the abstract formalism of differential calculus and proves to be a powerful tool for the investigation of the smoothness properties of the distributions. (iii) The superstructure method, which is a later modification of the method of stratifications, is used to derive strong limit theorems (in the variation metric) for the distributions of stochastic functionals under weak convergence of the processes. Various application examples concern the functionals of Gaussian, Poisson and diffusion processes as well as partial sum processes from the Donsker-Prokhorov scheme. The research methods and basic results in this book are presented here in monograph form for the first time. The text would be suitable for a graduate course in the theory of stochastic processes and related topics.


Gaussian Random Functions

Gaussian Random Functions

Author: M.A. Lifshits

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 347

ISBN-13: 9401584745

DOWNLOAD EBOOK

It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht


Integration on Infinite-Dimensional Surfaces and Its Applications

Integration on Infinite-Dimensional Surfaces and Its Applications

Author: A. Uglanov

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 280

ISBN-13: 9401596220

DOWNLOAD EBOOK

It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.


Gaussian Measures

Gaussian Measures

Author: Vladimir I. Bogachev

Publisher: American Mathematical Soc.

Published: 2015-01-26

Total Pages: 450

ISBN-13: 147041869X

DOWNLOAD EBOOK

This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.


Lectures and Exercises on Functional Analysis

Lectures and Exercises on Functional Analysis

Author: Александр Яковлевич Хелемский

Publisher: American Mathematical Soc.

Published:

Total Pages: 496

ISBN-13: 9780821889695

DOWNLOAD EBOOK

The book is based on courses taught by the author at Moscow State University. Compared to many other books on the subject, it is unique in that the exposition is based on extensive use of the language and elementary constructions of category theory. Among topics featured in the book are the theory of Banach and Hilbert tensor products, the theory of distributions and weak topologies, and Borel operator calculus. The book contains many examples illustrating the general theory presented, as well as multiple exercises that help the reader to learn the subject. It can be used as a textbook on selected topics of functional analysis and operator theory. Prerequisites include linear algebra, elements of real analysis, and elements of the theory of metric spaces.


Local Fields and Their Extensions: Second Edition

Local Fields and Their Extensions: Second Edition

Author: Ivan B. Fesenko

Publisher: American Mathematical Soc.

Published: 2002-07-17

Total Pages: 362

ISBN-13: 082183259X

DOWNLOAD EBOOK

This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition. The book includes the following recent topics: Fontaine-Wintenberger theory of arithmetically profinite extensions and fields of norms, explicit noncohomological approach to the reciprocity map with a review of all other approaches to local class field theory, Fesenko's -class field theory for local fields with perfect residue field, simplified updated presentation of Vostokov's explicit formulas for the Hilbert norm residue symbol, and Milnor -groups of local fields. Numerous exercises introduce the reader to other important recent results in local number theory, and an extensive bibliography provides a guide to related areas.


Stochastic Analysis

Stochastic Analysis

Author: Ichirō Shigekawa

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 202

ISBN-13: 9780821826263

DOWNLOAD EBOOK

This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal


Boolean Functions in Coding Theory and Cryptography

Boolean Functions in Coding Theory and Cryptography

Author: Oleg A. Logachev

Publisher: American Mathematical Soc.

Published: 2012-02-08

Total Pages: 352

ISBN-13: 0821846809

DOWNLOAD EBOOK

This book offers a systematic presentation of cryptographic and code-theoretic aspects of the theory of Boolean functions. Both classical and recent results are thoroughly presented. Prerequisites for the book include basic knowledge of linear algebra, group theory, theory of finite fields, combinatorics, and probability. The book can be used by research mathematicians and graduate students interested in discrete mathematics, coding theory, and cryptography.


Metric Characterization of Random Variables and Random Processes

Metric Characterization of Random Variables and Random Processes

Author: Valeriĭ Vladimirovich Buldygin

Publisher: American Mathematical Soc.

Published: 2000-01-01

Total Pages: 276

ISBN-13: 9780821897911

DOWNLOAD EBOOK

The topic covered in this book is the study of metric and other close characteristics of different spaces and classes of random variables and the application of the entropy method to the investigation of properties of stochastic processes whose values, or increments, belong to given spaces. The following processes appear in detail: pre-Gaussian processes, shot noise processes representable as integrals over processes with independent increments, quadratically Gaussian processes, and, in particular, correlogram-type estimates of the correlation function of a stationary Gaussian process, jointly strictly sub-Gaussian processes, etc. The book consists of eight chapters divided into four parts: The first part deals with classes of random variables and their metric characteristics. The second part presents properties of stochastic processes "imbedded" into a space of random variables discussed in the first part. The third part considers applications of the general theory. The fourth part outlines the necessary auxiliary material. Problems and solutions presented show the intrinsic relation existing between probability methods, analytic methods, and functional methods in the theory of stochastic processes. The concluding sections, "Comments" and "References", gives references to the literature used by the authors in writing the book.


Stochastic Calculus of Variations

Stochastic Calculus of Variations

Author: Yasushi Ishikawa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-03-07

Total Pages: 362

ISBN-13: 3110392321

DOWNLOAD EBOOK

This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index