Local Fields and Their Extensions: Second Edition

Local Fields and Their Extensions: Second Edition

Author: Ivan B. Fesenko

Publisher: American Mathematical Soc.

Published: 2002-07-17

Total Pages: 362

ISBN-13: 082183259X

DOWNLOAD EBOOK

This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition. The book includes the following recent topics: Fontaine-Wintenberger theory of arithmetically profinite extensions and fields of norms, explicit noncohomological approach to the reciprocity map with a review of all other approaches to local class field theory, Fesenko's -class field theory for local fields with perfect residue field, simplified updated presentation of Vostokov's explicit formulas for the Hilbert norm residue symbol, and Milnor -groups of local fields. Numerous exercises introduce the reader to other important recent results in local number theory, and an extensive bibliography provides a guide to related areas.


Class Field Theory

Class Field Theory

Author: Emil Artin

Publisher: American Mathematical Soc.

Published: 1968

Total Pages: 206

ISBN-13: 9780821869512

DOWNLOAD EBOOK

This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory ... In this revised edition, two mathematical additions complementing the exposition of the original text are made. The new edition also contains several new footnotes, additional references, and historical comments.


Local Fields

Local Fields

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 249

ISBN-13: 1475756739

DOWNLOAD EBOOK

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.


Central Simple Algebras and Galois Cohomology

Central Simple Algebras and Galois Cohomology

Author: Philippe Gille

Publisher: Cambridge University Press

Published: 2017-08-10

Total Pages: 432

ISBN-13: 1108293670

DOWNLOAD EBOOK

The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.


Topics in the Theory of Algebraic Function Fields

Topics in the Theory of Algebraic Function Fields

Author: Gabriel Daniel Villa Salvador

Publisher: Springer Science & Business Media

Published: 2007-10-10

Total Pages: 658

ISBN-13: 0817645152

DOWNLOAD EBOOK

The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers. The examination explains both the similarities and fundamental differences between function fields and number fields, including many exercises and examples to enhance understanding and motivate further study. The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra.


Hopf Algebras and Galois Module Theory

Hopf Algebras and Galois Module Theory

Author: Lindsay N. Childs

Publisher: American Mathematical Soc.

Published: 2021-11-10

Total Pages: 311

ISBN-13: 1470465167

DOWNLOAD EBOOK

Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.


The Algebraic and Geometric Theory of Quadratic Forms

The Algebraic and Geometric Theory of Quadratic Forms

Author: Richard S. Elman

Publisher: American Mathematical Soc.

Published: 2008-07-15

Total Pages: 456

ISBN-13: 9780821873229

DOWNLOAD EBOOK

This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.


Class Field Theory

Class Field Theory

Author: Nancy Childress

Publisher: Springer Science & Business Media

Published: 2008-10-28

Total Pages: 230

ISBN-13: 0387724907

DOWNLOAD EBOOK

Class field theory brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. This book provides an accessible introduction to class field theory. It takes a traditional approach in that it attempts to present the material using the original techniques of proof, but in a fashion which is cleaner and more streamlined than most other books on this topic. It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included lots of challenging exercises throughout the text.


Arithmetic and Geometry

Arithmetic and Geometry

Author: Luis Dieulefait

Publisher: Cambridge University Press

Published: 2015-10-08

Total Pages: 539

ISBN-13: 1316381447

DOWNLOAD EBOOK

The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.


Representation Theory, Dynamical Systems, and Asymptotic Combinatorics

Representation Theory, Dynamical Systems, and Asymptotic Combinatorics

Author: V. Kaimanovich

Publisher: American Mathematical Soc.

Published: 2011-11-09

Total Pages: 258

ISBN-13: 0821872893

DOWNLOAD EBOOK

This volume, devoted to the 70th birthday of the well-known St. Petersburg mathematician A. M. Vershik, contains a collection of articles by participants in the conference "Representation Theory, Dynamical Systems, and Asymptotic Combinatorics", held in St. Petersburg in June of 2004. The book is suitable for graduate students and researchers interested in combinatorial and dynamical aspects of group representation theory.