Liquid moulding technologies such as RTM and SRIM are increasingly used for manufacturing composites in a variety of industries. Most interest stems from the automotive industry in the continuing search for weight savings, manufacturing economies and vehicle refinement.Liquid Moulding Technologies provides a unique insight into the development and use of such processes with a comprehensive description of the material, process variants, equipment, control strategies and tooling techniques used. Procedures for materials characterisation, preform and mould design are also described and the text is augmented by a number of case studies for prototype and production parts.This book is an invaluable source for both industrial moulders and those working in research and development.
The book ÂœRotational Moulding Technology Hand Book covers :- Innovative Rotomoulding, Technology of Rotational Moulding, Rotational Moulding Process, Roto moulding Technology Details, Materials that can be Roto moulded, Roto moulding Machines, Design Consideration for Roto mould Containers, Rotational Moulding Process Control, Rotational Moulding of Nylons, Moulds Fabrication for Roto moulding, Roto moulds for Cast Aluminium, Pin holes and Bubbles in Roto moulded Products, Rotational Moulding of Liquid Polymers, Powdering Thermoplastic and Quality Consideration, Plastic Water Storage Tanks (HDPE) (Sintex Type), Suppliers of Plant and Machinery of Roto Moulding and Moulds.
Examines the advantages of Embedded and FO-WLP technologies, potential application spaces, package structures available in the industry, process flows, and material challenges Embedded and fan-out wafer level packaging (FO-WLP) technologies have been developed across the industry over the past 15 years and have been in high volume manufacturing for nearly a decade. This book covers the advances that have been made in this new packaging technology and discusses the many benefits it provides to the electronic packaging industry and supply chain. It provides a compact overview of the major types of technologies offered in this field, on what is available, how it is processed, what is driving its development, and the pros and cons. Filled with contributions from some of the field's leading experts,Advances in Embedded and Fan-Out Wafer Level Packaging Technologies begins with a look at the history of the technology. It then goes on to examine the biggest technology and marketing trends. Other sections are dedicated to chip-first FO-WLP, chip-last FO-WLP, embedded die packaging, materials challenges, equipment challenges, and resulting technology fusions. Discusses specific company standards and their development results Content relates to practice as well as to contemporary and future challenges in electronics system integration and packaging Advances in Embedded and Fan-Out Wafer Level Packaging Technologies will appeal to microelectronic packaging engineers, managers, and decision makers working in OEMs, IDMs, IFMs, OSATs, silicon foundries, materials suppliers, equipment suppliers, and CAD tool suppliers. It is also an excellent book for professors and graduate students working in microelectronic packaging research.
Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. - Contains contributions from leading experts in the field - Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry - Discusses both existing commercial composite materials and those currently under research or development
The success of any product sold to consumers is based, largely, on the longevity of the product. This concept can be extended by various methods of improvement including optimizing the initial creation structures which can lead to a more desired product and extend the product's time on the market. Design and Optimization of Mechanical Engineering Products is an essential research source that explores the structure and processes used in creating goods and the methods by which these goods are improved in order to continue competitiveness in the consumer market. Featuring coverage on a broad range of topics including modeling and simulation, new product development, and multi-criteria decision making, this publication is targeted toward students, practitioners, researchers, engineers, and academicians.
This book provides valuable information on polymer composite manufacturing, with a focus on liquid molding processes and the resin transfer molding technique (RTM). It presents and discusses emerging topics related to the foundations, engineering applications, advanced modeling and experiments regarding the RTM process. A valuable resource for engineers, professionals in industry and academics involved in this advanced interdisciplinary field, it also serves as a comprehensive reference book for undergraduate and postgraduate courses.
Mouldmaking and Casting is a technical manual of the many techniques of this ancient craft and art form. With step-by-step illustrations, it explains the materials required and the processes involved to create reproductions of a range of pieces. The book covers traditional techniques as well as today's more advanced technical methods.
The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials
Injection moulding of elastomers for mass produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Proces sing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made. The conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials and equipment.
This book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book. The US market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process.