Classifying Spaces for Surgery and Corbordism of Manifolds. (AM-92), Volume 92

Classifying Spaces for Surgery and Corbordism of Manifolds. (AM-92), Volume 92

Author: Ib Madsen

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 296

ISBN-13: 1400881471

DOWNLOAD EBOOK

Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.


Introduction to Topological Quantum Matter & Quantum Computation

Introduction to Topological Quantum Matter & Quantum Computation

Author: Tudor D. Stanescu

Publisher: CRC Press

Published: 2016-12-19

Total Pages: 284

ISBN-13: 135172228X

DOWNLOAD EBOOK

What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.


The Classifying Spaces for Surgery and Cobordism of Manifolds

The Classifying Spaces for Surgery and Cobordism of Manifolds

Author: Ib Madsen

Publisher: Princeton University Press

Published: 1979-11-21

Total Pages: 300

ISBN-13: 9780691082264

DOWNLOAD EBOOK

Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.


Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces

Author: Sigurdur Helgason

Publisher: American Mathematical Soc.

Published: 2001-06-12

Total Pages: 682

ISBN-13: 0821828487

DOWNLOAD EBOOK

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.


Topology and Representation Theory

Topology and Representation Theory

Author: Eric M. Friedlander

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 330

ISBN-13: 0821851659

DOWNLOAD EBOOK

During 1991-1992, Northwestern University conducted a special emphasis year on the topic, "The connections between topology and representation theory." Activities over the year culminated in a conference in May 1992 which attracted over 120 participants. Most of the plenary lectures at the conference were expository and designed to introduce current trends to graduate students and nonspecialists familiar with algebraic topology. This volume contains refereed papers presented or solicited at the conference; one paper is based on a seminar given during the emphasis year.


Cohomology of Finite Groups

Cohomology of Finite Groups

Author: Alejandro Adem

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 333

ISBN-13: 3662062828

DOWNLOAD EBOOK

The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.


Invitations to Geometry and Topology

Invitations to Geometry and Topology

Author: Martin R. Bridson

Publisher:

Published: 2002

Total Pages: 352

ISBN-13: 9780198507727

DOWNLOAD EBOOK

This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.


Knots, Links, Spatial Graphs, and Algebraic Invariants

Knots, Links, Spatial Graphs, and Algebraic Invariants

Author: Erica Flapan

Publisher: American Mathematical Soc.

Published: 2017-05-19

Total Pages: 202

ISBN-13: 1470428474

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.


Cohomology of Finite Groups

Cohomology of Finite Groups

Author: Alejandro Adem

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 329

ISBN-13: 3662062801

DOWNLOAD EBOOK

Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo logical algebra and algebraic K-theory. It arose primarily in the 1920's and 1930's independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N